Status report of ttH analysis at 500 GeV

1/4/2015 Yuji Sudo Kyushu University

Introduction

- We are working on ttH study
 - M_H=125 GeV.
 - Polarization : (Pe⁻,Pe⁺)=(-0.8,+0.3)
 - Integrated luminosity 500 fb⁻¹
 - ILD full simulation
- ttbar cross section is increased around ttbar threshold by ttbar bound-state effect
- ttH cross section is enhanced
- ttZ cross section is also increased

We can directly measure the top-Yukawa coupling via tth channel at \sqrt{s} = 500 GeV.

Expected # of events @ 500fb⁻¹

- $\sqrt{s} = 500 \text{ GeV}$, Mh = 125 GeV, (Pe⁻, Pe⁺)=(-0.8, +0.3)
- Production cross section

• Branching ratio

Process	σ (fb)	Decay mode	Branching ratio
e⁻e⁺ → tth	0.485	h→bb	0.577
e⁻e⁺ → ttZ	1.974	tt→bqqbqq	0.457
$e^-e^+ \rightarrow ttg(bb)$	1.058	tt→blvbqq	0.438
e⁻e⁺ → tbW	979.8	tt→blvblv	0.105

• Expected # of signals and Backgrounds(@500fb⁻¹)

ttH(tt→6j, H→bb)	63.9		
ttH(tt→lv4j,H→bb)	61.3	ttZ	987
ttH(tt→lvlv2j, H→bb)	14.6	ttg(bb)	529
ttH(tt→all, H(nobb))	102.6	tbW	489902

ttH (H→bb) analysis

- interference term is negligible
- counting analysis with cut based event selection

In this analysis, higgs decays into two b jets

- 4 b jets out of 4-8 jets (b tagging: LCFIPlus)
- Use Kt clustering only for removing low Pt background

Event selection

- signal topology
- ✓ number of jets
- ✓ # of Isolated Lepton
- ✓ # b jet candidates \ge 4
- detector acceptance $|\text{Jet } \cos \theta| \le 0.99$
- jet paring

- kinematics
- \checkmark energy cut of leading jets
- ✓ energy cut of low energy jets
- ✓ Missing momentum > 20 GeV (4, 6jtes mode)

 e^+

e

- reconstructed mass
- ✓ Mjjj of top candidates
- ✓ Mjj of higgs candidate

- Isolated Lepton ID
 - ✓ Exact one Isolated lepton
- jet clustering : Durham algorithm

$$Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 - \cos\theta)}{E_{\rm cm}^2}$$

- forced 6 jets clustering is applied to ttH \rightarrow 6jets channel • "Y₆₅ > 0.0016" + "Y₆₅<=0.0016 & Y₅₄>0.006"
- ✓ b jet candidate \ge 4 (b likeness >=0.85, 0.8, 0.6, 0.2)
- reject event with very forward jets
- ✓ $|\cos\theta_{jet}| \le 0.99$
- Missing Momentum > 20 GeV
- Jet paring, χ2< 30.5
- Leading 2 jets energy sum < 197 GeV
- smallest 2 jets energy sum > 66 GeV
- Mjjj, Mjlv > 140 GeV (mass of top candidate)
- 95 < Mjj < 160 GeV (2 jets mass of higgs candidate)

- Isolated Lepton ID
 - ✓ Exact one Isolated lepton
- jet clustering : Durham algorithm

$$Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 - \cos\theta)}{E_{\rm cm}^2}$$

- Isolated Lepton ID
 - ✓ Exact one Isolated lepton
- jet clustering : Durham algorithm

$$Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 - \cos\theta)}{E_{\rm cm}^2}$$

- forced 6 jets clustering is applied to $ttH \rightarrow 6$ jets channel
- \checkmark "Y₆₅ > 0.0016" + "Y₆₅ <= 0.0016 & Y₅₄ > 0.006"
- ✓ b jet candidate \ge 4 (b likeness ≥=0.85, 0.8, 0.6, 0.2)
- reject event with very forward j∉
 ✓ |cosθ_{iet}| ≤ 0.99
- Missing Momentum > 20 GeV
- Jet paring, χ2< 30.5
- Leading 2 jets energy sum < 197
- smallest 2 jets energy sum > 66
- Mjjj , Mjlv > 140 GeV (3 jets mas
- 95 < Mjj < 160 GeV (2 jets mass

- Missing Momentum > 20 GeV
- Jet paring, χ2< 30.5
- Leading 2 jets energy sum < 197 GeV
- smallest 2 jets energy sum > 66 GeV
- Mjjj , Mjlv > 140 GeV (3 jets mass of top candidate)
- 95 < Mjj < 160 GeV (2 jets mass of higgs candidate)

- Isolated Lepton ID
 - ✓ Exact one Isolated lepton
- jet clustering : Durham algorithm

$$Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 - \cos\theta)}{E_{\rm cm}^2}$$

- forced 6 jets clustering is applied to $ttH \rightarrow 6$ jets channel
- \checkmark "Y₆₅ > 0.0016" + "Y₆₅ <= 0.001 [reconstructed Mjjj]
- ✓ b jet candidate \ge 4 (b likeness >
- reject event with very forward jet
 ✓ |cosθ_{iet}| ≤ 0.99
- Missing Momentum > 20 GeV
- Jet paring, χ2< 30.5
- Leading 2 jets energy sum < 197 6
- smallest 2 jets energy sum > 66 G___
- Mjjj , Mjlv > 140 GeV (3 jets mass of top candidate)
- 95 < Mjj < 160 GeV (2 jets mass of higgs candidate)

Result of Event selection higgs candidate Mjj (lv6jet)

• $\sqrt{s} = 500 \text{ GeV}$, L=500 fb⁻¹, (Pe⁻, Pe⁺)=(-0.8, +0.3)

Process	# of evt		
ttH (not Signal)	0.25		
ttZ	5.19		
ttbb	2.04		
tbW	8.39		
bkgd total	15.88		
ttH→lv6jet	10.26		

Result of Event selection higgs candidate Mjj(8jet, 2l2v4bjet)

tth ($h \rightarrow bb$) significance

$S/\sqrt{S+B}$

(Pe,Pe ⁺)	(-0.8,+0.3)		(+0.8,-0.3)	
Lumi. (fb⁻¹)	500	1600	500	1600
8 jets	2.17	3.89	1.40	2.53
lv + 6 jets	2.00	3.58	1.29	2.32
2l2v + 4 jets	1.02	1.83	0.72	1.31

(Pe,Pe+)=(-0.8,+0.3) polarization makes better result.
 -- number of signal is important.

measurement precision at different \sqrt{s}

* Same MC samples are used for all analysis.

Summary

- Counting analysis of ttH ($H \rightarrow bb$)
- Significance (stat. only) at 500 GeV ttH (H→bb) S/√S + B (|Δy_t/y_t|) 500 fb⁻¹ : 3.13 (16.6 %) 1600fb⁻¹ : 5.60 (9.28 %)
 @ √s = 520 GeV, 500 fb⁻¹ : S/√S + B = 5.26 |Δy_t/y_t| = 9.88 %

Backup

Event Selection 8 jets

Isolated Lepton ID with BDT

✓ require no Isolated lepton

- Jet clustering : Durham algorithm
- gorithm $Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 \cos \theta)}{E_{cm}^2}$
 - forced 8 jet clustering for ttH→8jets channel

 $\checkmark "Y_{87} > 0.00038" + "Y_{87} <= 0.00038 \&\& Y_{76} > 0.004"$

- ✓ b candidate jets ≥ 4 (b likeness >=0.85, 0.8, 0.6, 0.2)
- reject events with very forward jets
- ✓ |Jet $\cos\theta$ | ≤ 0.99
- Jet paring, χ2< 13.3
- Leading 2 jets energy sum < 188 GeV
- smallest 3 jets energy sum > 60 GeV
- Mjjj > 140 GeV (top candidate 3 jet mass)
- 95 < Mjj < 160 (GeV) (range of higgs candidate Mjj)

some variables used event selection $(ttH \rightarrow 8 jets)$

Y₈₇<=0.00038 && Y₇₆>0.004

Leading 2 jets < 188 (Gev) energy sum

smallest 3 jets

Mjjj > 140 GeV

- Isolated Lepton ID
 - ✓ Exact one Isolated lepton
- jet clustering : Durham algorithm

$$Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 - \cos\theta)}{E_{\rm cm}^2}$$

- forced 6 jets clustering is applied to ttH \rightarrow 6jets channel • "Y₆₅ > 0.0016" + "Y₆₅<=0.0016 & Y₅₄>0.006"
- ✓ b jet candidate \ge 4 (b likeness >=0.85, 0.8, 0.6, 0.2)
- reject event with very forward jets
- ✓ $|\cos\theta_{jet}| \le 0.99$
- Missing Momentum > 20 GeV
- Jet paring, χ2< 30.5
- Leading 2 jets energy sum < 197 GeV
- smallest 2 jets energy sum > 66 GeV
- Mjjj , Mjlv > 140 GeV (3 jets mass of top candidate)
- 95 < Mjj < 160 GeV (2 jets mass of higgs candidate)

some variables used event selection $(ttH \rightarrow lv+6jets)$

Leading 2 jets energy sum < 197 GeV

smallest 2 jets energy sum > 66 GeV

Mjjj > 140 GeV

Event Selection 2l2n+4 jets

• Isolated Lepton ID with BDT

✓ require exact two Isolated leptons

- Jet clustering : Durham algorithm $Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 \cos\theta)}{E_{cm}^2}$
 - forced 6 jet clustering for ttH→4jets channel

 "Y₄₃ > 0.002"
- ✓ 4 b jets (b likeness >=0.85 ,0.8, 0.6, 0.2)
- reject events with very forward jets
- ✓ |Jet $\cos\theta$ | ≤ 0.99
- Missing momentum > 20 GeV
- Jet paring, χ2< 12.5
- Leading jet energy < 112 (Gev)
- smallest jet energy > 38 (GeV)
- 100 < Mjj < 155 (GeV) (range of higgs candidate Mjj)

some variables used event selection $(ttH \rightarrow 2I2v+4b)$

Leading jet energy < 112 (Gev)

Missing momentum > 20 GeV

smallest jet energy > 38 (GeV)

Jet pairing, χ2 Cut (8 jets mode)

- \sqrt{s} = 500GeV is near by $\chi^2 =$ threshold of the ttH production
 - P_{higgs} should be small
 - Dijet angle becomes large
- → Angle information between higgs candidate jets is effective to choose correct jet pair.
- try all combination and choose a pair with minimum χ^2 value

$$\left(\frac{\Delta angle(j_1, j_2) - \Delta angle(higgs \ jj)}{\sigma_{\Delta angle(higgs \ jj)}} \right)^2$$

$$+ \left(\frac{m_{j_3 j_4 j_5} - M_{top}}{\sigma_{M_{top}}} \right)^2 + \left(\frac{m_{j_4 j_5} - M_W}{\sigma_{M_W}} \right)^2$$

$$+ \left(\frac{m_{j_6 j_7 j_8} - M_{top}}{\sigma_{M_{top}}} \right)^2 + \left(\frac{m_{j_7 j_8} - M_W}{\sigma_{M_W}} \right)^2$$

require b likeness ≥ 0.2 to j_1 , j_2 , j_3 , j_6

- Reference values are made from reconstructed jets which are matched with MC information
- Mtop = 171.5GeV
- sigma Mtop = 16.8 GeV
- MW = 80. 5GeV
- sigma MW = 9.9 GeV
- angle(jj) = 2.448
- sigma angle(jj) = 0.277

higgs and top pairing, χ2 Cut (6 jets mode)

 $\chi^2 =$

Angle information between higgs candidate jets is effective to choose correct jet pair.

A W mass is reconstructed with Isolated lepton and Missing P

- try all combination and choose a pair with minimum χ^2 value

$$\left(\frac{\Delta angle(j_1, j_2) - \Delta angle(higgs jj)}{\sigma_{\Delta angle(higgs jj)}} \right)^2$$

$$+ \left(\frac{m_{j_3 j_4 j_5} - M_{top}}{\sigma_{M_{top}}} \right)^2 + \left(\frac{m_{j_4 j_5} - M_W}{\sigma_{M_W}} \right)^2$$

$$+ \left(\frac{m_{j_6 l\nu} - M_{top}}{\sigma_{M_{top}}} \right)^2$$

require b likeness ≥ 0.2 to j_1 , j_2 , j_3 , j_6

- Reference values are made from reconstructed jets which are matched with MC information
- Mtop = 171.5GeV
- sigma Mtop = 16.8 GeV
- MW = 80. 5GeV
- sigma MW = 9.9 GeV
- angle(jj) = 2.448
- sigma angle(jj) = 0.277

higgs and top pairing, χ^2 Cut (4 jets mode)

- $\chi^2 = \left(\frac{\Delta angle(j_1, j_2) \Delta angle(higgs \, jj)}{\sigma_{\Delta angle(higgs \, ji)}}\right)^2$
- Angle information between higgs candidate jets is used to choose a jet pair.
- try all combination and choose a pair with minimum χ^2 value

- Reference values are made from reconstructed jets which are matched with MC information
- angle(jj) = 2.448
- sigma angle(jj) = 0.277

event selection

MC stat.

tth, ttz, ttbb: 100k~200k events tbW(DBD samples): 10k~100k events

Lepton ID

Mjj shape estimation of tbW events in 4 b jets category

- tbW event: 6 fermion events including ttbar, single top etc..
- It is difficult to estimate Mjj shape of tbW events in 4b jets category, because of low statistics of tbW MC events
- At first, compare Mjj shapes of ttZ event in 2/4b jets category
- check event shape of variables which are used event selection. (ttZ, tbW)
- ✓ use Mjj shape of tbW event in 2b jets category higgs candidate Mjj ≥ 80 GeV