

HIGGS SELF COUPLING ANALYSIS USING THE EVENTS CONTAINING $H \rightarrow WW*$ DECAY

Masakazu Kurata, Tomohiko Tanabe The University of Tokyo Junping Tian, Keisuke Fujii KEK

Taikan Suehara

Kyushu University

ALCW15, 04/20/2014-04/24/2014

INTRODUCTION

• @ALCW15

- 4 presentations I need to show:
 - @Physics session: about Higgs self-coupling(focus on Kinematic Fitter)
 - @TPC session: about dE/dx and PID
 - @Software session: LCFIPlus
 - @ILD collaboration meeting: about high level reconstruction

o Today:

- Talk about the status of Higgs self-coupling
- Some extra plots to be discussed for other sessions

JET PAIRING USING BAYESIAN APPROACH
 Bayesian probability – posterior probability when x is given

$$P(A|x) = \frac{P(x|A) \cdot P(A)}{P(x)}$$

P(x|A): likelihood(probability when x is given from class A)

P(A): prior probability of class A

P(x): probability of variable x (sum of all the classes' p.d.f.)

Bayesian classifier – regard x as the element of class A,

• When P(A|x) is largest of all the classes

o e.g. x belongs to A when P(A|x) > P(B|x), P(A|x) > P(C|x), etc.

- Likelihood introduce angle information
- o In WW∗→jjjjj case, combination
 - is <mark>3</mark>
 - Jet with large energy tends to come from on-shell W

PRELIMINARY RESULTS & PROBLEM

o WW→jjjj pairing case

- Also check maximum likelihood using LDA
- $\chi^2 = -2\log BW(m(j1j2)|m_W,\Gamma_W)$

Pairing type	X ²	Just likelihood	Naïve Bayes
True positive(%)	60.2	70.1	74.7

Good improvement can be obtained!

Looks hopeful, but…

o ZH→(bb)(bb) case

$$\chi^2 = \frac{(m_1 - m_Z)^2}{\sigma_Z^2} + \frac{(m_2 - m_H)^2}{\sigma_H^2}$$

Pairing type	X ²	Just likelihood	Naïve Bayes
True positive(%)	56.6	59.8	59.8

- Improve slightly thanks to the angle information
- But, need more improvement…
 - No improvement even if using naïve Bayes…
- o Can we get better result?

TRYING KINEMATIC FITTER@500GEV

- Determining the kinematics globally in the events
 - Distort the event kinematics to meet the constraint in specific process
 - Estimate how much is a event likely to the specific process?
 - Mass resolution will be improved by using χ^2 minimization

o ZHH→(bb)(bb)(WW*)→(bb)(bb)(l ν jj) kinematic fitter

• Constraints:

$$m(bb) = m_Z$$

$$Max(m(lv), m(jj)) = m_W$$

$$m(bb) = m(lvjj)$$

$$E(H) + E(Z) + E(jj) + E(lv) = \sqrt{s}$$

$$\overrightarrow{p_H} + \overrightarrow{p_Z} + \overrightarrow{p_{jj}} + \overrightarrow{p_{lv}} = \vec{0}$$

$$|\overrightarrow{p_v}| = E_v$$

JET ENERGY RESOLUTION

 Most critical factor which degrades mass resolution is jet energy resolution

0.18

ILD Preliminary

- So it is necessary to include this effect into Kinematic fitter
- Jet energy resolution has energy dependence of jets

 Parameterize fit parameters with jet energy
 Image: Coupling Analysis
 ZH→ZHH
- e.g.) bjet energy resolution

PERFORMANCE CHECK o Higgs mass(H→bb) & Z mass distribution

Mass resolution is going better! →promising

- From CDF experience, better mass resolution provides better MVA classifier(even if backgrounds come in signal mass region)··· →same in ILC?
 - c.f.) 15% mass resolution improvement→10% improvement of sensitivity for Higgs search

COMPARISON BETWEEN SIGNAL AND BACKGROUNDS • Higgs mass(H \rightarrow bb) & Z mass distribution

- How are mass distributions of backgrounds?
- ZZH background is hard to reject?
- Top related backgrounds will be separated well

MVA CLASSIFIER ONGOING MVAoutput using kinematic fitter result

Really good separation!!!

- Much better than the MVA result@ALCW14
- m(H1)=m(H2) constraint seems very powerful for background rejection
- Very hopeful to improve significance!

• Results will be @ALCW15

- TRYING KINEMATIC FITTER@1TEV
 In 1TeV case, VBF process is the promising process to measure Self-coupling well
 - Weighting factor becomes small for VBF process against ZHH process
- Process of $e^+e^- \rightarrow \nu \ \nu \ HH$
 - Disadvantage of $HH \rightarrow (bb)(WW*)$: b-tagging
 - b-tagging available is only 2!
 - ttbar backgrounds can't be suppressed even if using b-tagging
- So, background rejection using kinematics is the key to good results

o Kinematic fitter helps background rejection? 2

KINEMATIC FITTER 1TEV o Construct $\nu \nu HH \rightarrow \nu \nu$ (bb)(WW) $\rightarrow \nu \nu$ (bb)(jjjj)

Constraints: m(H1)=m(H2)

 $Max(m(jj), m(jj)) = m_W$ $\vec{p} = \vec{0}$, include missing $\sum E = 1TeV$, include missing

o Jet energy resolution effect is included to kinematic fitter

Same way as @500GeV

Energy dependence of jet energy resolution itself is considered

PERFORMANCE CHECK • Higgs mass($H \rightarrow bb$) & Z mass distribution

Mass resolution is going better! →promising

Higgs Self Coupling Analysis

No correction Kinfit

COMPARISON BETWEEN SIGNAL AND BACKGROUNDS • Each mass & missing energy distribution

- How are mass distributions of backgrounds?
- ZZH background is hard to reject?
- Top related backgrounds will be separated well
- m(H1)=m(H2) constraint will be powerful in this case too!

SUMMARY AND PLAN

- O Higgs self coupling analysis using the events with H→WW* is ongoing.
 - Kinematic fitting will be a good tool for mass resolution improvement
 - Getting some impressive results to show until ALCW15

o Plan:

- Using Kinematic fitter to ZHH all hadronic events
- $\nu \nu HH \rightarrow \nu \nu (bb)(WW) \rightarrow \nu \nu (bb)(I \nu jj)$ process analysis
- Finally, incorporate all the improvements and update the self-coupling result!

Some extras for other sessions

15

LOOK MORE O Momentum Dependence of Particle ID efficiency

Momentum ranges where PID is good/bad

- PID efficiency is >60% @1GeV/c \sim 20GeV/c
- Low momentum $\mu \, / \, \pi$ separation is difficult
- Too low momentum PID is not effective(tracking is good?)

VERTEX CLASSIFICATION

- Can Particle ID be used for flavor tagging improvement?
 - Checking vertex mass distribution
 - Vertex is from LCFIPlus
 - How much effect on vertex mass?
- Check D meson reconstruction
 - Track energy correction using PID
 - How much D meson mass is close to PDG value($1.869 \pm 0.0001 \text{GeV/c}^2$)?
 - How does wrong PID destroy D meson²⁵⁰ mass?

m_D=1.865 $\pm \, 3\, \sigma$ is defined as D meson mass range

status	Inside	outside
PID Correct(num. of vtx)	550	6940
PID reversed(num. of vtx)	83	77
Inversed PID is near nominal D mass	22	77

INTRODUCTION

- Measuring the Higgs self coupling is the key point to prove the electroweak symmetry breaking mechanism
 - Higgs potential in SM:

$$V = \lambda v^{2} H^{2} + \lambda v H^{3} + \frac{1}{4} \lambda H^{4}$$
Mass term
Trilinear coupling
$$SM: \lambda = \frac{m_{H}^{2}}{2v^{2}} \quad v \sim 246 GeV$$
Quartic coupling
 \rightarrow difficult to measure

- Observing two Higgs bosons in the event is the only way to measure the self coupling
- Accurate test of the coupling may lead to the extended nature of Higgs sector → may go to new physics
- Our goal is to observe and measure the Higgs self coupling first

COMPONENTS FOR BETTER RESULTS

- Basic components for better sensitivity
 - Lepton ID: Isolated leptons can be identified well, and very good fake suppression
 - →many idea have been introduced
 - B-tagging: better b-tagging algorithm provides better background suppression
 - Jet pairing: good jet pairing can obtain good kinematic variables, which leads to good background suppression
 - Good energy & momentum resolution: of course, but limited by the detector performance
 - \rightarrow particle ID will be the key to energy correction
 - Jet clustering: jet reconstruction is the key to the analysis, but it is difficult
- All the components are related each other

ANALYSIS STRATEGY FOR $HH \rightarrow (BB)(WW)$ • Classify the events with Z and W decays:

@500GeV	WW→(qq)(qq)	WW→(qq)(I ν)	@1TeV	WW→(qq)(qq)	WW→(qq)(I ν)
Z→bb	8jets	Lepton+6jets	Z→bb	8jets	Lepton+6jets
Z→cc	8jets	Lepton+6jets	Z→II	Dilepton+6jets	N/A
Z→II	Dilepton+6jets	Trilepton+4jets	ν ν HH	6jets (+missing)	N/A

• Z decays into heavy flavor pair or lepton pair mainly

Need flavor tagger or clean Z mass distribution to reject huge backgrounds

Number of b jet candidates in the event and number of leptons can form exclusive samples

- Number of b-tagging available: up to 4
 - Basically, 2 or 4 b-tagged jets events can be used
 - o c-tagging is also available
- Number of leptons: from 0 to 3

SOFT JET FINDING

- o Tracks in the gluon jets spread wider than those in quark jets(e.g. analyses on hadron collider)
 - Traditional jet shape can be a good estimator
- Using Multivariate Analysis and estimating the hard jet likeliness for each jet

p(r)

CHECK THE PERFORMANCE Check the jets with small hard jet likeliness - signal vs. ttbar For 6jets

o For 8iets

24

FLAVOR TAGGING • Using LCFIPlus

- b candidate is set >0.4
- Final b-likeliness is optimized after MVA cut

•
$$b(Combined) = \log(\frac{b_1b_2}{(1-b_1)(1-b_2)})$$

• Use as an input variable for MVA

• BACKGROUND REJECTION • Multi Variate Analysis @500GeV

- Some cuts are implemented before MVA to tighten the input variable space jet energy, χ^2 , visible energy, (Z mass)
- Background rejection strategy : rejecting small backgrounds first and then rejecting main background
 - Tighten the variable space when rejecting main backgrounds
- e.g. all hadronic case:

o Multi Variate Analysis @1TeV

• Same strategy as the case of 500GeV

Some kinematic variables used for MVA

Very powerful variable @500GeV: m(jjjj), m(l ν jj)

Some kinematic variables used for MVA

Very powerful variable @1TeV: m_{H} , cos θ (Hbb)

NON-SIMPLE VARIABLES USED FOR MVA o Sphericity and aplanarity

• Eigenvalue combinations of sphericity tensor:

 $S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\mathbf{p}_{i}|^{2}}, \quad \text{eigenvalues: } \lambda_{1} > \lambda_{2} > \lambda_{3}$ Sphericity: $S = \frac{3}{2} (\lambda_{2} + \lambda_{3})$

- Aplanarity: $A = \frac{3}{2}\lambda_3$
- Indicates whether the event is 2-jets like or isotropic

NON-SIMPLE VARIABLES USED FOR MVA

o Fox-wolfram moments

$$H_l = \sum_{i,j} \frac{|\mathbf{p}_i| |\mathbf{p}_j|}{E_{\text{vis}}^2} P_l(\cos \theta_{ij}) ,$$

- P₁ is Legendre polynomials
- Those moments characterize the structures of 2jets, 3jets, or isotropic events

MVA OUTPUTS EXAMPLES(ALLHADRONIC@500GEV)

MVA OUTPUTS EXAMPLES(NNHH@1TEV)

SENSITIVITY@500GEV o HH \rightarrow (bb)(WW)

- As mentioned, categorized with decay tipes of Z and W boson
 o Z→bb, cc or II
- b-tagging strategy introduce looser b-tag category
 - o 4-btag & 3-btag
- E_{CM}=500GeV, L=2ab-1
- Significance \sim 1.91 σ

Modes	Z decay	b tag	Signal	Background	Significance
All hadronic	Z→bb Z→cc	4btag 3btag	15.20 19.43 11.29	87.52 3099.49 366.13	1.50 σ 0.35 σ 0.58 σ
Lepton + jets	Z→bb Z→cc		1.65 1.50	17.62 819.61	0.38 σ 0.05 σ
Dilepton	Z→II		2.24	8.44	0.69 <i>σ</i>
Trilepton	Z→II		1.05	2.60	0.55σ
Combined					1.91 σ

SENSITIVITY@1TEV o HH→(bb)(WW)

- As mentioned, categorized with decay types of Z and W boson
 o Z→bb and II, VBF channel
- b-tagging strategy fully used the b-tagging for each category
- E_{CM}=1TeV, L=2ab-1
- Significance \sim 2.80 σ

Modes	Z decay	Signal	Background	Significance
All hadronic	Z→bb	17.15	48.17	2.12 σ
Lepton + jets	Z→bb	1.16	9.24	0.36 σ
Dilepton	Z→II	1.03	14.30	0.26 σ
6jets+ Missing	No Ζ, <i>ν ν</i> ΗΗ	6.90	8.24	1.77 σ
Combined				2.80 σ

SUMMARY AND PLAN

- O Higgs self coupling analysis using the events with H→WW* is ongoing.
 - Multi variate analysis to reject the backgrounds
 - Total sensitivity @500GeV is ~1.91 σ
 - Total sensitivity @1TeV is 2.80σ

o Plan:

- Start to combine with golden channel and estimate the Higgs self coupling
- Full simulation @1TeV
- Optimize b-tagging strategy
 - Forming looser b-tag category
- Improvement of basic components for the analysis
 - Lepton ID
 - o b-tagging
 - Jet energy correction
 - o Jet clustering

SOFT JET FINDING

- Soft jet finding may be available for the events with extra jets not coming from hard process quarks
 - e.g. 8 jets requirement to ttbar hadronic events(6 jets from hard quarks)
 - Traditional jet shape indicates the same tendency as hadron collider analysis

$$\psi(\cos\theta) = \int_{1}^{\cos\theta} \frac{p(r)}{p_{jet}} dr$$

36

SOFT JET FINDING

- Hard jet likeliness is introduced
 - Using MVA to form it
 - Analysis samples are divided into 2 based on the angle with the nearest jet
 - \rightarrow large shared area for both jets deteriorate the traditional jet shape
- Use the likeliness for the input of background rejection MVA or simple cut of backgrounds

REDUCTION TABLE

All hadronic

• Final b-tagging: btag(3)>0.92 && btag(4)>0.44

• HH→bbbb contamination is 5.41 events

process	signal	ttbar	tt + QQ	tt+Z	tt + H	ZZ + H	ZZZ
expected	354.00	1.16×10 ⁶	1660.00	3307.00	280.00	1540.00	3660.00
preselection	49.47	2462.09	79.11	76.25	38.32	87.22	70.72
Jet energy	47.92	1970.58	77.62	74.98	37.96	72.88	57.28
χ2	44.32	1353.38	64.57	62.41	34.02	61.60	48.16
Visible energy	44.23	1326.19	64.31	62.00	33.92	61.18	47.90
NN for 8 jets	36.51	1011.92	36.37	34.37	16.38	51.59	47.90
NN for ttbar	20.53 (9.85)	302.59	26.44	25.17	13.07	21.71	9.00
b-tagging	14.92 (5.41)	87.54	17.54	16.42	9.13	16.10	6.03