Hadronic recoil mass study
 ＠ 250 GeV ILC

Tatsuhiko Tomita（Kyushu Univ．）
Taikan Suehara（Kyushu Univ．）

九州大学

Overview - qqH channel

At lepton collider, we can measure Higgs without looking Higgs directly.
-> Model Independent search

The branching ratio of Z-> leptonic is $\sim 3.5 \%$ for each generation.

In contrast, the branching ratio of \mathbf{Z}-> hadronic is $\sim 70 \%$.

- More statistics

Model independent?

- More background

Data samples

Higgs mass	Есм	Luminosity	Polarization	Detector
125 GeV	250 GeV	$250 \mathrm{fb}^{-1}$	left: $(-0.8,+0.3)$ right:(+0.8, -0.3$)$	ILD_DBD ver.

semi-leptonic events | are also considerable BG . |
| :--- |
| left $: 220 \mathrm{fb}$ |
| right $: 142 \mathrm{fb}$ |

Analysis flow

- To improve jet clustering,
- Initial state radiation
- Isolated lepton
- Hadronic tau jet
were removed from events.
- Durham jet clustering was applied to the remaining events.

$$
y=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{Q^{2}}
$$

- Forced 4 jet clustering, y threshold clustering were used.

Cut efficiency and Categorization

- As far as I presented before, cut efficiency of each Higgs decay is different.
- To solve this problem, we used categorization (9 categories). (using, number of leptons, number of tau jets, b-tag(>0.6), c-tag(>0.6))

Two Luminosity case

polarization and Luminosity	significance σ zH	stat. precision σ zH	stat. precision gzzH	stat. precision gzzH (combined)
left ($-0.8,+0.3$) 250 fb	30.0σ	3.3%	1.7%	1.2%
right (+0.8, -0.3) $250 \mathrm{fb}^{-1}$	32.4σ	3.1%	1.6%	1.1%
left (-0.8, +0.3) $1150 \mathrm{fb}^{-1}$ $($ Lumi UP)	64.3σ	1.6%	0.8%	0.6%
right (+0.8, -0.3) $1150 \mathrm{fb}-1$ (Lumi UP)	69.5σ	1.4%	0.7%	0.5%

The effect of the different BR from SM

bb $+5 \%(57.7->62.7)$	210.27	141.51	$+0.1 \%$	-0.1%
bb $-5 \%(57.7->52.7)$	210.06	141.67	-0.1%	$+0.1 \%$
cc $+5 \%(2.9->7.9)$	209.07	140.84	-0.5%	-0.5%
cc $-5 \%(2.9->0.0)$	210.77	142.00	$+0.3 \%$	$+0.3 \%$
gg + 5\% (8.6->13.6)	209.95	141.63	-0.1%	$\sim 0.0 \%$
gg -5\% (8.6->3.6)	210.38	141.56	$+0.1 \%$	$\sim 0.0 \%$
WW + 5\% (21.6->26.6)	210.01	141.61	-0.1%	$\sim 0.0 \%$
WW -5\% (21.6->16.6)	210.15	141.46	-0.0%	-0.1%
tau +5\% (6.3->11.3)	210.4	141.73	$+0.1 \%$	$+0.1 \%$
tau -5\% (6.3->1.3)	209.93	141.44	-0.1%	-0.1%
ZZ +5\% (2.6->7.6)	210.5	141.86	$+0.2 \%$	$+0.2 \%$
ZZ -5\% (2.6->0.0)	210.09	141.51	-0.0%	-0.1%

The different BR has only ~ 0.5 \% effect on total cross section of ZH production. This is much smaller than current stat. precision.

Stat. precision in the "worst case"

- If σ tot $\times \mathrm{BR}$ is not changed from SM, but gZZH is changed. The stat. precision of some major decay mode will suppressed.
- bb and tau tau mode were examined.
- about 10 \% decrease for bb/tau tau.
- Still keep less than 5% stat. precision in right polarization

	stat. precision of $\sigma \mathrm{ZH}$	stat. precision of gZZH
$\sigma_{\text {tot }} \times \mathrm{BR}$ bb $=$ SM	left : 4.5% right : 3.6%	left : 2.3% right : 1.8%
$\sigma_{\text {tot }} \times \mathrm{BR}_{\tau \tau}=$ SM	left : 3.7% right : 3.4%	left : 1.9%
right : 1.7%		

Summary and Prospects

summary

- Using categorization, the difference of cut efficiency is suppressed at most ~ 5%.
- Stat. precision is about ~ 3 \% which is almost the same as leptonic channel (Watanuki-san's results)
- In worst case, the stat. precision is less than 5 \% ($\sigma \mathrm{ZH}$)
prospects
- 350 GeV
- Invisible decay (ZH->qqZZ->qqnnnn)

