Hadronic recoil mass study @ 250 GeV ILC Tatsuhiko Tomita (Kyushu Univ.)

Taikan Suehara (Kyushu Univ.)

The 41th general meeting of ILC physics working group

Overview - qqH channel

At lepton collider, we can measure Higgs without looking Higgs directly.

-> Model Independent search

The branching ratio of Z -> leptonic is ~3.5% for each generation.

In contrast, the branching ratio of Z -> hadronic is ~70%.

More statistics

Model independent?

More background

Data samples

Higgs mass	Есм	Luminosity	Polarization	Detector
125 GeV	250 GeV	250 fb ⁻¹	left: (-0.8, +0.3) right:(+0.8, -0.3)	ILD_DBD ver.

The 41th general meeting of ILC physics working group

Analysis flow

- To improve jet clustering,
 - Initial state radiation
 - Isolated lepton
 - Hadronic tau jet were removed from events.
- Durham jet clustering was applied to the remaining events.

$$y = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$

• Forced 4 jet clustering, y threshold clustering were used.

Cut efficiency and Categorization

As far as I presented before, cut efficiency of each Higgs decay is different.

To solve this problem, we used categorization (9 categories). (using, number of leptons, number of tau jets, b-tag(>0.6), c-tag(>0.6))

Two Luminosity case

polarization and Luminosity	significance <i>о</i> zн	stat. precision <i>о</i> zн	stat. precision gzzн	stat. precision GZZH (combined)
left (-0.8, +0.3) 250 fb ⁻¹	30.0σ	3.3%	1.7%	1.2%
right (+0.8, -0.3) 250 fb ⁻¹	32.4σ	3.1%	1.6%	1.1%
left (-0.8, +0.3) 1150 fb ⁻¹ (Lumi UP)	64.3σ	1.6%	0.8%	0.6%
right (+0.8, -0.3) 1150 fb ⁻¹ (Lumi UP)	69.5 <i>σ</i>	1.4%	0.7%	0.5%

The effect of the different BR from SM

bb + 5% (57.7->62.7)	210.27	141.51	+0.1%	-0.1%
bb - 5% (57.7->52.7)	210.06	141.67	-0.1%	+0.1%
cc + 5% (2.9->7.9)	209.07	140.84	-0.5%	-0.5%
cc - 5% (2.9->0.0)	210.77	142.00	+0.3%	+0.3%
gg + 5% (8.6->13.6)	209.95	141.63	-0.1%	~0.0%
gg - 5% (8.6->3.6)	210.38	141.56	+0.1%	~0.0%
WW + 5% (21.6->26.6)	210.01	141.61	-0.1%	~0.0%
WW - 5% (21.6->16.6)	210.15	141.46	~0.0%	-0.1%
tau + 5% (6.3->11.3)	210.4	141.73	+0.1%	+0.1%
tau - 5% (6.3->1.3)	209.93	141.44	-0.1%	-0.1%
ZZ + 5% (2.6->7.6)	210.5	141.86	+0.2%	+0.2%
ZZ - 5% (2.6->0.0)	210.09	141.51	~0.0%	-0.1%

The different BR has only ~0.5 % effect on total cross section of ZH production. This is much smaller than current stat. precision.

Stat. precision in the "worst case"

- · If σ tot × BR is not changed from SM, but gZZH is changed. The stat. precision of some major decay mode will suppressed.
 - bb and tau tau mode were examined.

- about 10 % decrease for bb/tau tau.
- Still keep less than
 5 % stat. precision
 in right polarization

	stat. precision of σ ZH	stat. precision of gZZH
$\sigma_{\rm tot} \times BR_{\rm bb} = SM$	left : 4.5% right : 3.6%	left : 2.3% right : 1.8%
$\sigma_{\text{tot}} \times BR_{\tau \tau} = SM$	left : 3.7% right : 3.4%	left : 1.9% right : 1.7%
$\sigma_{tot} \times BR_{\tau \tau} = SM$ $\sigma_{tot} \times BR_{bb} = SM$	left : 5.8% right : 4.3%	left : 2.9% right : 2.2%

Summary and Prospects

summary

- Using categorization, the difference of cut efficiency is suppressed at most ~ 5 %.
- Stat. precision is about ~ 3 % which is almost the same as leptonic channel (Watanuki-san's results)
- In worst case, the stat. precision is less than 5 % (σ ZH)

prospects

350 GeV

Invisible decay (ZH->qqZZ->qqnnnn)

•

•