Occupancy Study

George Courcoubetis

Goal

• Produce the occupancy distribution for FCAL channels for a single train

ILC Design Table

		Baseline 500 GeV Machine			1st Stage	L Upgrade	$E_{\rm CM}$ Upgrade	
							A	В
$E_{\rm CM}$	GeV	250	350	500	250	500	1000	1000
$f_{\rm rep}$	Hz	5	5	5	5	5	4	4
f_{linac}	Hz	10	5	5	10	5	4	4
$n_{ m b}$		1312	1312	1312	1312	2625	2450	2450
N	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0	1.74	1.74
$\Delta t_{\rm b}$	ns	554	554	554	554	366	366	366
$I_{\rm beam}$	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
$G_{\mathbf{a}}$	$\rm MVm^{-1}$	14.7	21.4	31.5	31.5	31.5	38.2	39.2
P_{beam}	MW	5.9	7.3	10.5	5.9	21.0	27.2	27.2
$P_{\rm AC}$	MW	122	121	163	129	204	300	300
σ_{z}	mm	0.3	0.3	0.3	0.3	0.3	0.250	0.225
$\Delta p/p$	%	0.190	0.158	0.124	0.190	0.124	0.083	0.085
$\Delta p/p$	%	0.152	0.100	0.070	0.152	0.070	0.043	0.047
P_{-}	%	80	80	80	80	80	80	80
P_+	%	30	30	30	30	30	20	20
$\gamma \epsilon_x$	μm	10	10	10	10	10	10	10
$\gamma \epsilon_{\rm y}$	nm	35	35	35	35	35	30	30
β_{r}^{*}	mm	13.0	16.0	11.0	13.0	11.0	22.6	11.0
$\hat{\beta_y^*}$	mm	0.41	0.34	0.48	0.41	0.48	0.25	0.23
σ_{v}^{*}	nm	729.0	683.5	474	729	474	481	335
$\sigma_{\rm y}^{\rm x}$	nm	7.7	5.9	5.9	7.7	5.9	2.8	2.7
L	$\times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.75	1.0	1.8	0.75	3.6	3.6	4.9
$L_{0.01}/L$	X10 0m 5	87.1%	77.4%	58.3%	87.1%	58.3%	59.2%	44.5%
δBS		0.97%	1.9%	4.5%	0.97%	4.5%	5.6%	10.5%
N _{pairs}	$\times 10^{3}$	62.4	93.6	139.0	62.4	139.0	200.5	382.6
E_{pairs}	TeV	46.5	115.0	344.1	46.5	344.1	1338.0	3441.0
	$\begin{array}{c} E_{\rm CM} \\ f_{\rm rep} \\ f_{\rm linac} \\ n_{\rm b} \\ N \\ \Delta t_{\rm b} \\ I_{\rm beam} \\ \\ G_{\rm a} \\ P_{\rm beam} \\ P_{\rm AC} \\ \\ \sigma_z \\ \Delta p/p \\ P_{\rm AC} \\ \\ \sigma_x \\ \Delta p/p \\ P_{\rm -} \\ P_{\rm +} \\ \\ \gamma \epsilon_{\rm x} \\ \gamma \epsilon_{\rm y} \\ \\ \beta_{\rm x}^{*} \\ \beta_{\rm y}^{*} \\ \\ \beta_{\rm y}^{*} \\ \\ \sigma_{\rm x}^{*} \\ \sigma_{\rm y}^{*} \\ \\ L \\ L_{0.01}/L \\ \delta_{\rm BS} \\ N_{\rm pairs} \\ E_{\rm pairs} \\ E_{\rm pairs} \\ \end{array}$	$\begin{array}{cccc} E_{\rm CM} & {\rm GeV} \\ \hline f_{\rm rep} & {\rm Hz} \\ f_{\rm linac} & {\rm Hz} \\ n_{\rm b} & & \\ N & \times 10^{10} \\ \Delta t_{\rm b} & {\rm ns} \\ I_{\rm beam} & {\rm mA} \\ \hline G_{\rm a} & {\rm MV m^{-1}} \\ P_{\rm beam} & {\rm MW} \\ P_{\rm AC} & {\rm MW} \\ \hline \sigma_{\rm z} & {\rm mm} \\ \Delta p/p & \% \\ \Delta p/p & \% \\ \Delta p/p & \% \\ P_{-} & \% \\ P_{+} & \% \\ \hline \gamma \epsilon_{\rm y} & {\rm nm} \\ \gamma \epsilon_{\rm y} & {\rm nm} \\ \sigma_{\rm x}^{*} & {\rm nm} \\ \sigma_{\rm y}^{*} & {\rm nm} \\ \sigma_{\rm y}^{*} & {\rm nm} \\ {\rm nm} \\ \hline \sigma_{\rm x}^{*} & {\rm nm} \\ \sigma_{\rm y}^{*} & {\rm nm} \\ L & \times 10^{34} {\rm cm}^{-2} {\rm s}^{-1} \\ L_{0.01}/L \\ \delta_{\rm BS} \\ N_{\rm pairs} & \times 10^{3} \\ E_{\rm pairs} & {\rm TeV} \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EcmGeV250350500 f_{rep} Hz555 f_{linac} Hz1055 n_b 1312131213121312 N $\times 10^{10}$ 2.02.02.0 Δt_b ns554554554 I_{beam} mA5.85.85.8 P_{Acc} MW5.97.310.5 P_{AC} MW122121163 σ_z mm0.30.30.3 $\Delta p/p$ %0.1900.1580.124 $\Delta p/p$ %0.303030 $\gamma \epsilon_x$ µm101010 $\gamma \epsilon_y$ nm13.016.011.0 β_x^* mm13.016.011.0 β_y^* nm7.75.95.9 L $\times 10^{34} cm^{-2} s^{-1}$ 0.751.01.8 $L_{0.01}/L$ $\times 10^{34} cm^{-2} s^{-1}$ 0.751.01.8 δ_{BS} 0.97%1.9%4.5%Npairs $\times 10^3$ $\delta_{2.4}$ 93.6139.0 E_{pairs} TeV46.5115.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Derivation of Luminosity

• The train luminosity with a 5hz collision rate is given by:

$$L_{TRAIN} = 3.6 * 10^{-5} fb^{-1} s^{-1} * \frac{1}{5} s = 7.2 * 10^{-6} fb^{-1}$$

Processes Included

- Pair backgrounds
- γγ->hadrons
- Bhabha's
- 32 lower cross section processes

 Criterion: Included processes with expected event number ³ 0.1 per train

Method

- Used Norman Graf's Calorimeter Occupancy Driver to extract event number cell ID and position per hit for FCAL
- Printed the information for each hit in a text file
- One text file per process
- A python script was written to input the text files and output train occupancy results

Method

- For each physical process in the study, the expected number of events per train was calculated
- The number of events included was randomly selected according to the Poisson distribution based on the expected number
- The information from each event was combined to calculate the hits per detector cell

Treatment of polarization

- The polarization of the beam was assumed to be 80% for electrons 30% for positrons
- Processes had 1(γγ), 2 (e±γ or bhabha), or 4 (mostly e+e-) polarization states
- We assumed equal luminosity of each polarization state

$$N_{events} = \frac{L_{train}S}{P}$$

Question about bhabhas

- There are two kinds of bhabha files
- -80e-|+30e+ and +80e-|-30e+
- What about -80e-|-30e+ and +80e-|+30e+?
- Even if cross section is 0 for e-L/e+L and e-R/e+R the event rate should not be 0 since the polarization is not 100%
- For now we have ignored the -80e-|-30e+ and +80e-|+30e+ polarizations and assumed 100% of the luminosity is in -80e-|+30e+ and +80e-|-30e+

Limitations

- Available pair background events are 1024, only enough for 39% of a single train
- True division between the polarization states is not known

Calculation of expected event numbers

- Pair background: 1 per bunch crossing, 2625 events (but only 39% of a single train available)
- $\gamma\gamma$ ->hadrons: 1.2 per bunch crossing, 2625*1.2=3150 events
- The bhabha sample has a total Luminosity of $3.6*10^{-4} fb^{-1}$ hence $\frac{3.6*10^{-4} fb^{-1}}{7.20^{-6} fb^{-1} trains^{-1}} = 50 trains$ • Total number of Bhabha events is 100,334 hence
- 2006.68 is the expected event number per train.
- Bhabhas depend on polarization, since assumed a 50-50 polarization ~1003 events were included for each beam polarization

Estimation of number of cells

- Assumed FCAL is an annulus shaped detector
- Found the hits with the greatest and lowest registered radius in the FCAL, r=1295mm & r=197mm, and the number of layers, n= 62.
- Used the cell geometry, 3.5x3.5 mm per cell

$$N_{cells} = \pi \frac{(r_{max}^2 - r_{min}^2)}{3.5^2} \cdot 62 = 2.6 \cdot 10^7$$

Output

- Histograms of number of hits per cell (occupancy) vs. number of cells, both exclusive and integrated over above a given frequency
- Text file with numerical display of results

Single train: Results in printed form

- Channel occupancy 0 24289956 percent 0.934229076923
- Channel occupancy 1 1404692
- Channel occupancy 2 235374
- Channel occupancy 3 52012
- Channel occupancy 4 13609
- Channel occupancy 5 3346
- Channel occupancy 6 790
- Channel occupancy 7 179
- Channel occupancy 8 34
- Channel occupancy 9 7
- Channel occupancy 10 1

percent 0.0540266153846 percent 0.00905284615385 percent 0.00200046153846 percent 0.00052342307692 percent 0.00012869230769 percent 3.03846153846e-05 percent 6.88461538462e-06 percent 1.30769230769e-06 percent 2.69230769231e-07 percent 3.84615384615e-08

Insight on the contribution of each process

Not that "Low cross section"

- Under the title of low cross section, there are two processes with high cross sections
- Two fermion production via electron positron annihilation (ids: 39068, 39069, 39070 and 39071) have a total event number of ~2006 per train.
- Down and anti-down quark production via two photon interaction (ids: 37577 709 events, 37578 ~1100 events, 37579 ~1100 events, 37580 ~1648 events) has a total number of ~4550.

Occupancy contribution of pairs

Occupancy contribution of low cross section processes

All processes, ten distinct trains in terms of prevalence in percent

Integrated occupancy

Integrated occupancy, ten distinct trains

Additional Plans

- Acquire more pairs
- Refine treatment of polarizations, especially bhabhas
- Study occupancy by layer
- Radial occupancy study
- Share the tools for further studies

Calculation of expected event numbers

• For the lower crossection processes

$$N_{events} = \frac{L_{train}S}{P}$$

- Where σ is crossection, P is number of polarisation states
- P is 1,2 or 4 since it depends on the polarization state of the electrons and positrons.
- 1 for processes involving photons , 2 for processes involving one positron (or electron) and a photon and 4 for processes involving an electron and a positron