Higgs Recoil Mass Study

ILC Physics Meeting

Jacqueline Yan (KEK)

CV 5201

What 's NEW this week

• continue study of Higgs decay mode dependence using high statistics sample generated for EACH DECAY MODE this time also include $H \rightarrow \gamma \gamma$

improve isolated lepton finder

in order to resolve bias due to pairing leptons not from prompt Z decay

✤ Previous "pairing method #1":

•select lepton pair with invariant mass closest to Z mass

•Shortcoming: sometimes pairs lepton from Higgs decay ($H \rightarrow zz$, ww , tau tau)

✤<u>NEW "pairing method #2" :</u>

 select lepton pair which yields smallest chi² formed using invariant mass and recoil mass

comparison between performance of the two lepton finders.

 some improvement in the "mistake" of H→ zz, ww, tau tau , gamma gamma pairing mistake for H→zz is reduced by about 15% without additional bias on other modes.

•similar improvement for WW, tau tau, gamma gamma as well. Now bb is perfect also.

 the remaining bias on H-->zz is still not trivial wrong pairing happens 4.2 % of the time However H→zz mode BR is very small , so overall 4.2% x 2% ~ 0.08 %

• the slight bias in this early stage of selection will mostly be "evened out" by other final cuts (e.g. tighter inv mass cut, recoil mass window, ect...)

how does new processor affect overall efficiency ? next page compares efficiency for each cut

Blue : old Red: new : inv mass and recoil mass are not as spread out

	Check lepton pairing mistake is reduced : Zmm channel							
250 GeV	bb	cc	ZZ	WW	tautau	gg	аа	
Total	100.00%	100%	100.00%	100.00%	100.00%	100%	100.00%	
C1	100.00%	100%	94.66%	98.13%	99.35%	100%	99.94%	
C2	0.00%	0	4.97%	1.46%	0.51%	0.00%	0.06%	
C3 OLD	0.00%	0	4.63%	0.46%	0.26%	0.00%	0.00%	
C5	0.00%	0	0.36%	0.41%	0.14%	0.00%	0.00%	
	0.00%	0	0.00%	0.00%	0.00%	0.00%	0.00%	
250 GeV	100.00%	100%	100.00%	100.00%	100.00%	100%	100.00%	
C1	100.00%	100%	95.43%	98.27%	99.39%	100%	99.96%	
C2	0.00%	0	4.21%	1.33%	0.47%	0.00%	0.04%	
C3 NEW	0.00%	0	3.82%	0.46%	0.26%	0.00%	0.00%	
C4	0.00%	0	0.36%	0.41%	0.14%	0.00%	0.00%	
05	0.00%	0	0.00%	0.00%	0.00%	0.00%	0.00%	
		С	1: correct					
	Pairing mis	stake C	2: two real lept	tons exist, but	t at least one	wrong lepton		
		С	3: both leptons	wrong				
		С	4: only 1 real l	epton				
		C	5: no real lepto	on				

Check lepton pairing mistake is reduced : Zee channel

250 GeV	bb	CC	77	WW	gg	аа
total muons	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
C1	99.90%	99.92%	97.29%	96.89%	99.95%	98.40%
C2	0.04%	0.01%	1.93%	2.12%	0.00%	1.19%
C3 OLD	0.00%	0.00%	1.16%	0.01%	0.00%	0.02%
C4	0.02%	0.01%	0.72%	0.96%	0.00%	0.37%
C5	0.00%	0	0.01%	0.00%	0.00%	0.00%
250 GeV	bb	СС				
total muons	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
C1	99.91%	99.92%	97.71%	96.90%	99.95%	98.35%
C2	0.02%	0.01%	1.52%	2.11%	0.00%	1.25%
C3 NEW	0.00%	0.00%	0.64%	0.01%	0.00%	0.01%
C4	0.02%	0.01%	0.72%	0.96%	0.00%	0.37%
C5	0.00%	0.00%	0.01%	0.00%	0%	0.00%

\mathbf{n}	correct
U I	

Pairing mistake	C2: two real leptons exist, but at least one wrong lepton
	C3: both leptons wrong
	C4: only 1 real lepton
	C5: no real lepton

Efficiency of each Higgs decay mode (after each cut)

250 GeV, Z μ μ mode

						ULD pro	cessor
Eff. (%)	bb	cc	99	tt	WW	ZZ	aa
Cut0 :	92.41 +/-0.086	92.43 +/-0.087	91.66 +/- 0.09	93.27 +/-0.081	92.67 +/-0.083	93.01 +/-0.082	92.84 +/- 0.07
Cut1 :	92.41 +/-0.086	92.43 +/-0.087	91.66 +/- 0.09	93.24 +/-0.081	92.64 +/-0.083	92.77 +/-0.083	92.83 +/- 0.07
Cut2 :	90.85 +/-0.094	90.84 +/-0.095	90.05 +/-0.098	91.37 +/-0.091	90.56 +/-0.093	90.6 +/-0.094	90.48 +/- 0.08
Cut3 :	88.92 +/- 0.1	89.07 +/- 0.1	88.23 +/- 0.11	89.39 +/-0.099	88.53 +/- 0.1	88.49 +/- 0.1	88.69 +/-0.086
Cut4 :	88.71 +/- 0.1	88.88 +/- 0.1	88.03 +/- 0.11	89.2 +/- 0.1	88.29 +/- 0.1	88.24 +/- 0.1	88.52 +/-0.087
Cut5 :	88.66 +/- 0.1	88.8 +/- 0.1	87.97 +/- 0.11	88.73 +/- 0.1	88.18 +/- 0.1	88.13 +/- 0.1	86.7 +/-0.092
Cut6 :	88.16 +/- 0.1	88.47 +/- 0.1	87.82 +/- 0.11	87.99 +/- 0.1	87.43 +/- 0.11	87.3 +/- 0.11	73.14 +/- 0.12
Cut7 :	81.72 +/- 0.13	81.74 +/- 0.13	81.23 +/- 0.13	81.62 +/- 0.13	81.04 +/- 0.13	81.14 +/- 0.13	67.98 +/- 0.13
Cut8 :	81.55 +/- 0.13	81.59 +/- 0.13	81.07 +/- 0.13	81.42 +/- 0.13	80.85 +/- 0.13	80.87 +/- 0.13	67.89 +/- 0.13

							1EW
Eff. (%)	bb	cc	99	tt	WW	ZZ	аа
Cut0 :	92.41 +/-0.086	92.43 +/-0.087	91.66 +/- 0.09	93.27 +/-0.081	92.67 +/-0.083	93.01 +/-0.082	92.84 +/- 0.07
Cut1 :	92.41 +/-0.086	92.43 +/-0.087	91.66 +/- 0.09	93.24 +/-0.081	92.64 +/-0.083	92.77 +/-0.083	92.83 +/- 0.07
Cut2 :	90.85 +/-0.094	90.84 +/-0.095	90.05 +/-0.098	91.4 +/-0.091	90.64 +/-0.093	90.65 +/-0.094	90.48 +/- 0.08
Cut3 :	88.92 +/- 0.1	89.07 +/- 0.1	88.23 +/- 0.11	89.4 +/-0.099	88.53 +/- 0.1	88.5 +/- 0.1	88.69 +/-0.086
Cut4 :	88.71 +/- 0.1	88.88 +/- 0.1	88.03 +/- 0.11	89.21 +/- 0.1	88.3 +/- 0.1	88.27 +/- 0.1	88.52 +/-0.087
Cut5 :	88.66 +/- 0.1	88.8 +/- 0.1	87.97 +/- 0.11	88.74 +/- 0.1	88.19 +/- 0.1	88.16 +/- 0.1	86.7 +/-0.092
Cut6 :	88.16 +/- 0.1	88.47 +/- 0.1	87.82 +/- 0.11	87.99 +/- 0.1	87.44 +/- 0.11	87.32 +/- 0.11	73.14 +/- 0.12
Cut7 :	81.72 +/- 0.13	81.74 +/- 0.13	81.23 +/- 0.13	81.62 +/- 0.13	81.03 +/- 0.13	81.12 +/- 0.13	67.98 +/- 0.13
Cut8 :	81.55 +/- 0.13	81.59 +/- 0.13	81.07 +/- 0.13	81.42 +/- 0.13	80.85 +/- 0.13	80.87 +/- 0.13	67.89 +/- 0.13

		•	Bias related to loose cuts on Mrec and
Process: ZH> mu+ mu- H			
Polarization: (e-,e+) = (-0.8,+0.3)	cut definition		Minv (cut2, cut3) are smoothed out
Cuts			botwoon H->77 www.tou.tou
Cut 0 :			Delween n ZZ, ww. lau lau
Cut 1 : leptype==13			
Cut 2 : Ptdl>106&abs(Minv-91.18)<406&Mrec>100&	S&Mrec<300		
Cut 3 : Minv>73&&Minv<120		•	Efficiency for $H \rightarrow zz$ slightly higher
Cut 4 : Ptdl>10&&Ptdl<70			after cut2 cut3
Cut 5 : (Ptsum<0 Ptsum>10)			
Cut 6 : !((Evis-Elep1-Elep2-Ephotonmax)<10&&Ephotonmax>0&&abs(cosmis)>0.98)			
Cut 7 : abs(cosz) < 0.9			Final officiancy not changed
Cut 8 : Mrec>100&&Mrec<160			Final endency not changed

250 GeV, Zee mode

						OID pr	ocessor
Eff. (%) Cut0 : Cut1 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut5 : Cut6 : Cut7 : Cut8 :	bb 87.88 +/- 0.11 87.88 +/- 0.11 86.23 +/- 0.12 84.14 +/- 0.12 84.04 +/- 0.12 83.99 +/- 0.13 83.5 +/- 0.13 77.4 +/- 0.14 77.21 +/- 0.14	cc 87.73 +/- 0.11 87.73 +/- 0.11 86.13 +/- 0.11 84.06 +/- 0.12 83.97 +/- 0.12 83.89 +/- 0.12 83.54 +/- 0.12 77.53 +/- 0.14 77.3 +/- 0.14	99 87.02 +/- 0.11 87.02 +/- 0.11 85.33 +/- 0.11 83.28 +/- 0.12 83.2 +/- 0.12 83.13 +/- 0.12 82.95 +/- 0.12 76.82 +/- 0.14 76.57 +/- 0.14	tt 88.73 +/- 0 88.66 +/- 0 86.7 +/- 0 84.11 +/- 0 83.98 +/- 0 83.52 +/- 0 82.84 +/- 0 77.04 +/- 0 76.8 +/- 0	ww 1.1 88.83 +/- 0.1 1.1 88.68 +/- 0.1 1.1 86.78 +/- 0.11 1.2 83.99 +/- 0.12 1.2 83.84 +/- 0.12 1.2 83.73 +/- 0.12 1.2 82.95 +/- 0.12 1.4 76.91 +/- 0.14 1.4 76.65 +/- 0.14	zz 89 +/- 0.1 85.94 +/- 0.11 84.09 +/- 0.12 81.75 +/- 0.12 81.64 +/- 0.12 81.52 +/- 0.12 80.75 +/- 0.13 75.16 +/- 0.14 74.89 +/- 0.14	aa 89.19 +/-0.081 89.19 +/-0.081 85.8 +/-0.092 83.53 +/-0.097 83.42 +/-0.098 81.7 +/- 0.1 69.68 +/- 0.12 64.82 +/- 0.13
Eff. (%) Cut0 : Cut1 : Cut2 : Cut2 : Cut3 : Cut3 : Cut4 : Cut5 : Cut5 : Cut5 : Cut6 : Cut7 : Cut8 :	bb 87.88 +/- 0.11 87.88 +/- 0.11 86.24 +/- 0.12 84.14 +/- 0.12 84.04 +/- 0.12 83.99 +/- 0.13 83.5 +/- 0.13 77.4 +/- 0.14 77.21 +/- 0.14	cc 87.73 +/- 0.11 87.73 +/- 0.11 86.13 +/- 0.11 84.06 +/- 0.12 83.96 +/- 0.12 83.88 +/- 0.12 83.54 +/- 0.12 77.53 +/- 0.14 77.3 +/- 0.14	99 87.02 +/- 0.11 87.02 +/- 0.11 85.33 +/- 0.11 83.28 +/- 0.12 83.2 +/- 0.12 83.13 +/- 0.12 83.13 +/- 0.12 82.95 +/- 0.12 76.82 +/- 0.14	tt 88.73 +/- 0. 88.66 +/- 0. 86.73 +/- 0.1 84.04 +/- 0.1 83.92 +/- 0.1 83.45 +/- 0.1 82.77 +/- 0.1 76.97 +/- 0.1 76.75 +/- 0.1	ww 1 88.83 +/- 0.1 1 88.68 +/- 0.1 1 86.82 +/- 0.11 2 83.86 +/- 0.12 2 83.71 +/- 0.12 2 83.6 +/- 0.12 2 82.83 +/- 0.12 4 76.79 +/- 0.14 4 76.54 +/- 0.14	zz 89 +/- 0.1 85.94 +/- 0.11 84.12 +/- 0.12 81.72 +/- 0.12 81.58 +/- 0.12 81.47 +/- 0.12 80.67 +/- 0.13 75.08 +/- 0.14 74.83 +/- 0.14	NEW 89.19 +/-0.081 89.19 +/-0.081 85.86 +/-0.091 83.5 +/-0.097 83.38 +/-0.098 81.66 +/- 0.1 69.67 +/- 0.12 64.79 +/- 0.13 64.63 +/- 0.13
Process: Polarizat Cut 0 : Cut 1 : Cut 2 : Cut 3 : Cut 4 : Cut 5 : Cut 6 : Cut 6 : Cut 7 :	ZH> e+ e- H tion: (e-,e+) = (-0.4 Cuts leptype==11 Ptdl>106&abs(Minr Minv>736&Minv<124 Ptdl>106&Ptdl<70 (Ptsum<0 Ptsum> !((Evis-Elep1-Ele abs(cosz) < 0.9 Mrec>1006&Mrec<10	8,+0.3) v-91.18)<60&&Mrec>100 0 10) ep2-Ephotonmax)<10&&E	cut definitio	on mis)>0.98)	 Smoothing ou cuts on Mred not apparent Efficiency for lowered by al 	ut of bias relate and Minv (cut r H→zz, ww, ta bout 0.1%	ed to loose 2, cut3) are u tau

Conclusion on mode dependence study

Tried to improve isolated lepton finder to resolve the slight mode dependence related to the early stage loose requirements on Invariant mass and recoil mass For Zmm channel :

- •We see pairing mistake reduced, esp for $H \rightarrow zz$ mode
- bias in early stage smoothed out between different modes
- •No effect on final efficiency (after all other cuts)
 - ➔ we still need other ways of improving

•use MC truth to study if other cuts affect "correct pairs" and "wrong pairs" differently

For Zee channel, :

• pairing mistake reduced for $H \rightarrow zz$, ww

•However mistake increased slightly for other modes ($\gamma\gamma$, $\tau\tau$) need investigation •Final efficiency is slightly reduced (by ~ 0.1%) Maybe : width used in denominator of chi^2 function was too tight due to contribution from longer tail recoil mass tail (and wider inv mass distr due to brem ?)

Maybe we should use different lepton pairing strategies for Zee and Zmm. Other cuts need to be investigated in the same way

BACKUP

Efficiency of each Higgs decay mode (after each cut)

250 GeV, $Z \mu \mu$ mode

250 Ge	/ bb	cc	tt	gg	ww	zz
cut0	92.41+/-0.09%	92.43+/-0.09%	93.27+/-0.08%	91.66+/-0.09%	92.64+/-0.08%	92.77+/-0.08%
cut1	90.85+/-0.09%	90.84+/-0.09%	91.40+/-0.09%	90.06+/-0.10%	90.72+/-0.09%	90.76+/-0.09%
cut2	88.92+/-0.10%	89.07+/-0.10%	89.39+/-0.09%	88.23+/-0.11%	88.53+/-0.10%	88.49+/-0.10%
cut3	88.71+/-0.10%	88.88+/-0.10%	89.20+/-0.10%	88.03+/-0.11%	88.29+/-0.10%	88.24+/-0.10%
cut4	88.66+/-0.10%	88.80+/-0.10%	88.73+/-0.10%	87.97+/-0.11%	88.18+/-0.10%	88.13+/-0.10%
cut5	88.16+/-0.10%	88.47+/-0.10%	87.99+/-0.10%	87.82+/-0.11%	87.43+/-0.11%	87.30+/-0.11%
cut6	81.72+/-0.13&	81.74+/-0.13%	81.62+/-0.13%	81.22+/-0.13%	81.04+/-0.14%	81.14+/-0.13%
cut7	72.4+/-0.15%	72.29+/-0.15%	72.33+/-0.14%	71.91+/-0.15%	71.67+/-0.14%	71.29+/-0.15%

Cut0: isolated μ selection Cut1: loose Minv and Mrec window Cut2: 73<Minv<120 GeV Cut3: 10 < Pt_dl < 70 GeV Cut4: Ptsum > 10 GeV Cut5: cos(θ missing) < 0.98 Cut6: cos(θ Z) < 0.9 Cut7: 100 < Mrec 160 GeV

- tt, ZZ, WW affected by "mistaken lepton selection" c.f gg mode receive no particular bias (?)
- tt more biased by Ptsum cut
 - diverse effect from $\cos(heta$ missing) cut

Efficiency of each Higgs decay mode (after each cut)

250 GeV, Zee mode

250 Ge	√ bb	сс	tt	gg	ww	zz
cut0	86.00+/-0.12%	85.86+/-0.11%	86.84+/-0.10%	85.16+/-0.11%	86.79+/-0.11%	84.11+/-0.11%
cut1	84.28+/-0.12%	84.22+/-0.12%	84.71+/-0.11%	83.43+/-0.12%	84.77+/-0.12%	82.15+/-0.12%
cut2	82.35+/-0.13%	82.27+/-0.12%	82.31+/-0.12%	81.50+/-0.12%	82.20+/-0.12%	80.01+/-0.13%
cut3	82.24+/-0.13%	82.18+/-0.12%	82.20+/-0.12%	81.43+/-0.12%	82.05+/-0.12%	79.90+/-0.13%
cut4	82.20+/-0.13%	82.10+/-0.12%	81.74+/-0.12%	81.36+/-0.12%	81.95+/-0.12%	79.79+/-0.13%
cut5	81.72+/-0.13%	81.76+/-0.12%	81.07+/-0.12%	81.18+/-0.12%	81.19+/-0.13%	79.03+/-0.13%
cut6	75.75+/-0.14%	75.88+/-0.14%	75.40+/-0.14%	75.19+/-0.14%	75.27+/-0.14%	73.56+/-0.14%
cut7	54.65+/-0.17%	54.86+/-0.16%	54.21+/-0.16%	54.38+/-0.16%	53.83+/-0.16%	52.83+/-0.16%

Cut0: isolated μ selection Cut1: loose Minv and Mrec window Cut2: 73<Minv<120 GeV Cut3: 10 < Pt_dl < 70 GeV Cut4: Ptsum > 10 GeV Cut5: cos(θ missing) < 0.98 Cut6: cos(θ Z) < 0.9 Cut7: 100 < Mrec 160 GeV

- Similar trends as observed for Zmm
- larger loss due to Minv cut

250 GeV	e2e2_Lpol				deviation	deviation	
	N(100-160)	N_err	eff	eff_err	from avg	from ALL	
bb	1885	5	72.40%	0.15%	0.42%	0.21%	
сс	1882	5	72.29%	0.15%	0.31%	0.10%	
tt	1883	5	72.33%	0.14%	0.35%	0.15%	
gg	1872	5	71.91%	0.15%	-0.08%	-0.28%	
WW	1866	5	71.67%	0.14%	-0.31%	-0.51%	
ZZ	1856	5	71.29%	0.15%	-0.69%	-0.90%	
all modes	1883	9	72.19%	0.27%			
		avg of 6	71.98%				
			• systema	atic bias is	< 1.3% for 2	Zmm. < 4.2%	6 tor Zee
Efficiency decay mo	<mark>/ of each Hi</mark> ode (after all o	gg <u>s</u> cuts)	 systema H→zz, (lepton pa 	atic bias is H →ww mo air containi	< 1.3% for 2 ost affected ng lepton n	Zmm. < 4.2% I ot from pro	6 for ∠ee mpt Z decay)
Efficiency decay mo	y of each Hi ode (after all o e1e1 Lpol	gg <u>s</u> cuts)	 systema H→zz, (lepton pa 	atic bias is H→ww mo air containi	< 1.3% for 2 ost affected ng lepton n deviation	Zmm. < 4.2% I ot from pro deviation	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV	<mark>/ of each Hi</mark> ode (after all o e1e1_Lpol N(100-160)	<mark>ggs</mark> <u>cuts)</u> deltaN	 systema H→zz, (lepton pa 	atic bias is H →ww mo air containi eff_err	< 1.3% for 2 ost affected ng lepton n deviation from avg	Zmm. < 4.2% ot from pro deviation from ALL	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV bb	<mark>/ of each Hi</mark> ode (after all e1e1_Lpol N(100–160) 1491	<mark>ggs</mark> <u>cuts)</u> deltaN 6	 systema H→zz, (lepton pa eff 54.65% 	atic bias is H→ww mo air containi eff_err 0.17%	< 1.3% for 2 ost affected ng lepton n deviation from avg -1.15%	Zmm. < 4.2% ot from pro deviation from ALL -0.39%	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV bb cc	<mark>/ of each Hi</mark> ode (after all e1e1_Lpol N(100-160) 1491 1497	<mark>ggs</mark> <u>cuts)</u> deltaN 6 6	 systema H→zz, (lepton pa eff 54.65% 54.86% 	atic bias is H→ww mo air containi eff_err 0.17% 0.16%	< 1.3% for 2 ost affected ng lepton n deviation from avg -1.15% -0.94%	Zmm. < 4.2% ot from pro deviation from ALL -0.39% -0.18%	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt	<mark>y of each Hi</mark> ode (after all e1e1_Lpol N(100-160) 1491 1497 1480	<mark>ggs</mark> <u>cuts)</u> deltaN 6 6 6	 systema H→zz, (lepton pa 6ff 54.65% 54.86% 54.21% 	atic bias is H→ww mo air containi eff_err 0.17% 0.16% 0.16%	< 1.3% for 2 ost affected ng lepton n deviation from avg -1.15% -0.94% -1.58%	Zmm. < 4.2% ot from pro deviation from ALL -0.39% -0.18% -0.83%	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg	<mark>y of each Hi</mark> ode (after all e1e1_Lpol N(100-160) 1491 1497 1480 1484	ggs cuts) deltaN 6 6 6 6	 systema H→zz, (lepton pa 54.65% 54.86% 54.21% 54.38% 	atic bias is H→ww mo air containi 0.17% 0.16% 0.16% 0.16%	< 1.3% for 2 ost affected ng lepton n deviation from avg -1.15% -0.94% -1.58% -1.42%	Zmm. < 4.2% ot from pro deviation from ALL -0.39% -0.18% -0.83% -0.66%	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg ww	y of each Hi ode (after all e1e1_Lpol N(100-160) 1491 1497 1480 1484 1469	ggs cuts) deltaN 6 6 6 6 6 6	 systema H→zz, (lepton pa 54.65% 54.86% 54.21% 54.38% 53.83% 	eff_err 0.17% 0.16% 0.16% 0.16% 0.16% 0.16%	< 1.3% for 2 ost affected ng lepton n deviation from avg -1.15% -0.94% -1.58% -1.42% -1.96%	Zmm. < 4.2% ot from pro deviation from ALL -0.39% -0.18% -0.83% -0.66% -1.21%	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg ww zz	y of each Hi ode (after all e1e1_Lpol N(100-160) 1491 1497 1480 1484 1469 1442	ggs cuts) deltaN 6 6 6 6 6 6 6 6	 systema H→zz, (lepton pa 54.65% 54.86% 54.21% 54.38% 53.83% 52.83% 	eff_err 0.17% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16%	< 1.3% for 2 ost affected ng lepton n from avg -1.15% -0.94% -1.58% -1.42% -1.96% -2.96%	Zmm. < 4.2% ot from pro deviation from ALL -0.39% -0.18% -0.83% -0.66% -1.21% -2.21%	6 for Zee mpt Z decay)
Efficiency decay mo 250 GeV bb cc tt gg ww zz all modes	y of each Hi ode (after all e1e1_Lpol N(100-160) 1491 1497 1480 1484 1469 1442 1502	ggs cuts) deltaN 6 6 6 6 6 6 6 6 10	 systema H→zz, (lepton pa 54.65% 54.86% 54.21% 54.38% 53.83% 52.83% 55.04% 	eff_err 0.17% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16% 0.16%	< 1.3% for 2 ost affected ng lepton n deviation from avg -1.15% -0.94% -1.58% -1.42% -1.96% -2.96%	Zmm. < 4.2% ot from pro deviation from ALL -0.39% -0.18% -0.83% -0.66% -1.21% -2.21%	6 for Zee

Use MC truth to investigate parent PDG of feptons in "selected pair" Z→mm

observation of Ptsum distr
(at stage just before Ptsum cut)
Zmm channel

Compare to other modes, H→tau tau seem very slightly biased in region of Ptsum < 10

0.8,+0.3)		xsec err	mass err [MeV]
250GeV	Zmm	3.35%	40.4
	Zee	4.76%	109
	Total	2.74%	37.9
350GeV	Zmm	3.90%	101
	Zee	5.63%	327
	Total	3.21%	96.5
500GeV	Zmm	6.95%	474
	Zee	9.89%	1540
	Total	5.69%	453

Mass error

•350 GeV is worse by factor of slightly less than 3 w.r.t. 250 GeV

•Zee is worse by a factor of 2 – 3 w.r.t. Zmm

•Systematic error of fitted recoil mass is negligible (< few MeV for 250, 350 GeV)

xsec error almost same as past results using GPET

Statistical error study results $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ combined

<u>xsec error</u>

- 350 GeV is 17 % worse w.r.t. 250 GeV
- 500 GeV is much worse
- Zee is worse by > 40% w.r.t. Zmm

right hand pol is worse by 5 – 10 % w.r.t.
left hand

(+0.8,-0.3)		xsec err	mass err [MeV]
250GeV	Zmm	3.57%	40.5
	Zee	5.14%	121
	Total	2.93%	38.4
350GeV	Zmm	4.31%	112
	Zee	6.26%	296
	Total	3.55%	105
500GeV	Zmm	8.36%	613
	Zee	9.85%	1510
	Total	6.37%	568 18

Can precision can be slightly improved if we fit over a wider range ? assuming we can neglect the H^{*}→WW bump beyond 160 GeV

(-0.8,+0.3)		narrow	wide	narrow	wide	
500GeV	Zmm	6.95%	6.50%	474	468	
	Zee	9.89%	7.86%	1540	1540	10-20 %
	Total	5.69%	5.01%	453	448	improvement on
(+0.8,-0.3)						xsec and a few %
500GeV	Zmm	8.36%	7.27%	613	572	on mass precision
	Zee	9.85%	7.86%	1510	1530	
	Total	6.37%	5.33%	568	536	19

Prevention of signal bias i.e. Higgs decay mode dependence

• the "traditional" dptbal (= |Pt,dl | - |Pt, γ |) cut for removing 2f BG (γ back-to back w.r.t. di-lepton) caused signal bias (esp. H $\rightarrow \tau \tau$, $\gamma \gamma$)

NEW #1 isolated photon finder: γ we look at have small cone energy) not from Higgs decay

NEW #2 Now use (instead of dptbal)

$$\left| \begin{array}{c} \overrightarrow{P_{t,sum}} \right| \circ \left| \overrightarrow{P_{t,g}} + \overrightarrow{P_{t,dl}} \right|$$

vector direction info singles out back to back events

 \sim 100 Higgs decay related γ events removed by dptbal cut !!

need more careful study of Higgs decay mode bias using high stat sample