TB final shower development analysis at ISS

Veta Ghenescu*, Titi Preda*

*Institute of Space Science, Bucharest, Romania

Set-up configuration

Plane number in eudaq file	Board ID	Plane order number
0	63	0
1	67	2
2	76	3
3	64	1

LumiCal sensor planes, 32 active channels/plane

Signal selection

Gain = 2 for channels:

- **- 4, 5, 6, 7**
- 12, 13, 14, 15
- 20, 21, 22, 23
- 28, 29, 30, 31

■ For every sample, $0 \le sam < 32$

$$ADC_{sam} = i_data[sam] - \langle Ped \rangle_{ch} \quad ch \in [0, 31]$$

 $ADC_{sam} \ge 4 * sigma$ (1)

For every channel and sensor plane

$$Signal_{ch} = MAX(ADC_{12}, ..., ADC_{sam}, ..., ADC_{25}), sam \in [12, 25]$$

$$\langle Signal_{pl} \rangle = \frac{\sum_{ch=0}^{31} Signal_{ch}}{N_{ev}}$$
 (2),

(2), where: N_{ev} – number of events which satisfy eq. 1

For electron beams - no cut was done

$$S_e(plane) = \langle Signal \rangle$$
 (1)

• For runs with the beam composed from electrons and muons, two cuts were done:

$$S_{e,\mu}(plane) = \langle Signal \rangle > Th$$
 (2)

$$\langle Signal \rangle = \frac{S_{cut_min} + S_{cut_max}}{2}$$
 (3)

FCAL Clustering WG Meeting, August 5, 2015

Board ID	Sensor plane number	MIP-peak [ADC]	
63	0	11.0275	
64	1	11.4568	
67	2	11.2622	
76	3	11.9206	

The error bars represent the systematic uncertainties!

The error bars represent systematic uncertainties!

Configuration	Board ID	Sensor plane	Radiation length $[\mathbf{X}_0]$	$\langle E_{dep} angle$ [MIP-peak]	Systematic errors [MIP-peak]
1	63	0	1	10.995	1.235
	64	1	3	39.420	1.22
	67	2	5	54.845	1.655
	76	3	7	50.145	2.195
2	63	0	3	37.385	1.285
	64	1	5	55.005	2.755
	67	2	7	51.09	0.78
	76	3	9	37.74	0.43
3	63	0	4	50.03	2.2
	64	1	6	56.955	2.325
	67	2	8	43.94	1.13

Conclusions

- We improved the maximum method for signal analysis for each trigger taking into account abroad large sample range;
- electrons and muons discrimination method by cuts worked well with pretty small systematic errors;
- The average value of the energy deposition doesn't depend of the binning spectrum;
- The runs of muons & electrons and electrons give almost the same values of the e- energy deposition;
- The energy *electrons* deposition is stable in time;