Isolated lepton tagging & New (CS) jet clustering

Junping Tian (KEK)

The 43 General Meeting of ILC Physics Subgroup, Sep. 5, 2015 @ KEK

idea to select a isolated lepton (e/μ)

i) lepton ID: electron or muon

- energy ratio deposited in ECal, HCal, Yoke
- general PID: dE/dx + shower profile
- ii) vertex: prompt or secondary
 - ▶ d0, z0 significance: $d0/\delta d0$, $z0/\delta z0$
- iii) isolation: not from jets
 - relatively high P
 - almost empty around

status of available tools

i) lepton ID: electron or muon

- energy ratio deposited in ECal, HCal, Yoke
- general PID: dE/dx + shower profile to be added
- ii) vertex: prompt or secondary
 - ▶ d0, z0 significance: $d0/\delta d0$, $z0/\delta z0$
- iii) isolation: not from jets
 - relatively high P
 - almost empty around

several algorithms exist

two isolation algorithms in DBD

cone based

(Ryo/Tomohiko; Junping)

(M.Amjad/LAL group)

jet based

both available during DBD, in MarlinReco/Analysis/IsolatedLeptonFinder

New idea for further improvement:

(developed by Claude/Junping for Higgs self-coupling analysis)

- utilise d0, z0, cone energy, momentum, Eecal/Ehcal more effectively —> MVA
- rethink of "what is isolation?" in terms of separation with "non-isolated" ones from jets —> utilise information of neighbour particles in every layer of cone
- as a first trial, introduce double cones to magnify the jet influence —> E(lep)/E(jet) and angle between them

cos=0.98, 95

input variables: electron

input variables: muon

neural-net output (tagging)

lepton tagging is associated to the selected lepton collection, can be optimised in final selection Available Processor in ilcsoft-v01-17-08 MarlinReco/Analysis/IsolatedLeptonTagging

- see "README" for how to use it
- see "example" for steering file
- several weights trained for different processes available
- so far only one processor for single isolated leptons, will be added processor for pair of leptons (Z finder)

today's update:

performance of this new tagging and comparison with DBD ones

Signal (yyxylv) Eff. versus Background (yycyyc) Eff. (thank Tino for the high statistics 6f samples)

disclaimer: I used default setting for DBD ones, might be optimised; for LAL algorithm, I tested using 4/5/6 jets as input

signal efficiency dependence of momentum (keep same background eff.)

in terms of background suppression

(keep same signal eff.)

Signal (yyxylv) Eff. versus Background (yycyyc) Eff.

(it seems signal eff. of DBD ones are a bit too low, indicate significant tuning may be possible)

sig/bkg efficiency dependence of momentum (keep same bkg/sig eff.)

impact of training

new training: yyxylv/yycyyc with overlay; old training : yyxylv/bbbb no overlay

~a factor of 2 difference between trainings, in terms of bkg suppression —> similar performance already confirmed in $\mu\mu$ HH versus yyxy $\mu\nu$

impact of training -> puzzle? new training: yyxylv/yycyyc with overlay; old training : yyxylv/bbbb no overlay

old training gives even better bkg suppression when sig eff is low, strange?

for next step: what kind of particles are still mis-tagged?

K is tagged mostly because K->µv in Calorimeter

proposal of new clustering: reconstruct the parton shower history

$$\begin{split} P_{\mathbf{q} \to \mathbf{q}\mathbf{g}}(z) &= C_F \, \frac{1+z^2}{1-z} \,, \\ P_{\mathbf{g} \to \mathbf{g}\mathbf{g}}(z) &= N_C \, \frac{(1-z(1-z))^2}{z(1-z)} \,, \\ P_{\mathbf{g} \to \mathbf{q}\overline{\mathbf{q}}}(z) &= T_R \, (z^2 + (1-z)^2) \,, \\ P_{\mathbf{q} \to \mathbf{q}\gamma}(z) &= e_{\mathbf{q}}^2 \, \frac{1+z^2}{1-z} \,, \\ P_{\ell \to \ell\gamma}(z) &= e_{\ell}^2 \, \frac{1+z^2}{1-z} \,, \end{split}$$

- do mini-jet clustering until #mini-jet ~ 20, during which Durham algorithm works well —> which also helps retain infrared safe
- new algorithm comes in to combine the mini-jets: if these mini-jets are actually the relic of parton shower, we should aim for the reconstruction of parton show history as the maximum information
- generic feature of parton shower can be used to help: angular ordering, $\theta_{i-1} < \theta_i < \theta_{i+1}, t_{i-1} < t_i < t_{i+1}$.
- assign each branching with a probability P_{q->qg}, etc.
- above is intraJet parton shower; we can use some feature of color correlation interJet, such as rapidity gap, etc. (not really sure).

a brief update: relation between mini-jet and parton?

sample: e+ e- —> vvHH —> vvbbbb @ 500 GeV

we are on the right track, or just coincidence?

the kinematics of final partons

(energy distribution in 2D of ϕ .vs. cos θ)

red: from H1 green: from H2

the kinematics of final partons

(energy distribution in 2D of ϕ .vs. cos θ)

red: from H1 green: from H2

the kinematics of final partons

(energy distribution in 2D of ϕ .vs. cos θ)

red: from H1 green: from H2

the kinematics of mini-jets versus final partons

(energy distribution in 2D of ϕ .vs. cos θ)

black: mini-jets; red: from H1; green: from H2

the kinematics of mini-jets versus final partons

(energy distribution in 2D of ϕ .vs. cos θ)

Event #009 2 ()-2 -0.5 0.5 -1 () $\cos\theta$

mini-jets idea looks promising, at least theoretically!

next step: try to implement the likelihood

$$\begin{split} P_{\mathbf{q} \to \mathbf{q}\mathbf{g}}(z) &= C_F \, \frac{1+z^2}{1-z} \,, \\ P_{\mathbf{g} \to \mathbf{g}\mathbf{g}}(z) &= N_C \, \frac{(1-z(1-z))^2}{z(1-z)} \,, \\ P_{\mathbf{g} \to \mathbf{q}\overline{\mathbf{q}}}(z) &= T_R \, (z^2 + (1-z)^2) \,, \\ P_{\mathbf{q} \to \mathbf{q}\gamma}(z) &= e_{\mathbf{q}}^2 \, \frac{1+z^2}{1-z} \,, \\ P_{\ell \to \ell\gamma}(z) &= e_{\ell}^2 \, \frac{1+z^2}{1-z} \,, \end{split}$$

theoretical paper having similar idea- arXiv:1102.3480