HIGGS SELF-COUPLING ANALYSIS WITH H→WW*

Masakazu Kurata 09/11/2015

STATUS

- Continue to update LCFIPlus
 - Embedding AVF is done
 - Embedding BNess tagger is partially done
 - Start to check the result

- Trying an idea for better jet clustering
 - Single jet clustering will make misclustering in some events
 - Integrating the results of some clustering methods might improve jet clustering
 - In Machine Learning field, there seems some improvement using "cluster ensemble"
 - So, we can try cluster ensemble for jet clustering
 - Can we obtain better result??

METHOD FOR CLUSTER ENSEMBLE

- A jet clustering makes partitions for mini-jets
 - Generally, partition of each jet clustering is different
 - e.g.) 3 jet clustering for 7 mini-jets:

	$\mathbf{H}^{(1)}$			$\mathbf{H}^{(2)}$			$\mathbf{H}^{(3)}$			$\mathbf{H}^{(4)}$		H(i): clustering method
	\mathbf{h}_1	\mathbf{h}_2	\mathbf{h}_3	\mathbf{h}_4	\mathbf{h}_5	\mathbf{h}_6	\mathbf{h}_7	\mathbf{h}_8	\mathbf{h}_9	\mathbf{h}_{10}	\mathbf{h}_{11}	h _i : partition
v_1	1	0	0	0	1	0	1	0	0	1	0	
v_2	1	0	0	0	1	0	1	0	0	0	1	v _i : mini–jet
v_3	1	0	0	0	1	0	0	1	0	0	0	
v_4	0	1	0	0	0	1	0	1	0	1	0	
v_5	0	1	0	0	0	1	0	0	1	0	1	
v_6	0	0	1	1	0	0	0	0	1	0	0	
v_7	0	0	1	1	0	0	0	0	1	0	0	

- Making consensus partition from those different clustering methods
- Need to define objective function to obtain the consensus partition
 - There are some formulation of objective function
 - o I tried some objective functions \rightarrow in most ways, the results are very unstable \cdot

OBJECTIVE FUNCTION FOR CLUSTER ENSEMBLE

• Mutual information approach:

$$\phi^{(\mathrm{NMI})}(\lambda^{(a)}, \lambda^{(b)}) = \frac{2}{n} \sum_{\ell=1}^{k^{(a)}} \sum_{h=1}^{k^{(b)}} n_{\ell}^{(h)} \log_{k^{(a)} \cdot k^{(b)}} \left(\frac{n_{\ell}^{(h)} n}{n^{(h)} n_{\ell}} \right)$$

$$\lambda^{(a)}, \lambda^{(b)}: \text{ a cluster of different clustering method}$$

 $k^{(a)}$, $k^{(b)}$: num. of clusters of each clustering method

 $n_i^{(h)}$: num. of mini-jets which belong to both of the cluster $\lambda^{(a)}$ and $\lambda^{(b)}$

 $n^{(h)}$: num. of mini-jets which belong to cluster $\lambda^{(a)}$

 n_l : num. of mini-jets which belong to cluster $\lambda^{(b)}$

n: total number of mini–jets

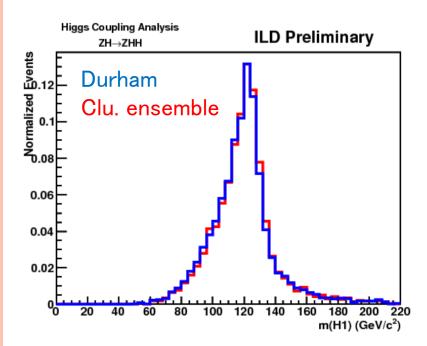
Maximize average mutual information:

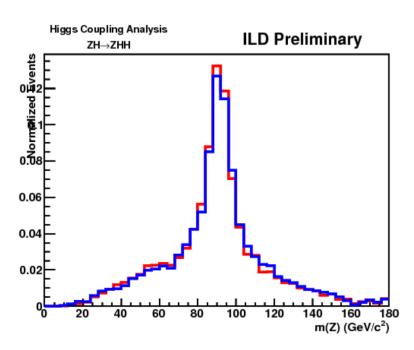
$$\phi^{(\text{ANMI})}(\mathbf{\Lambda}, \hat{\lambda}) = \frac{1}{r} \sum_{q=1}^{r} \phi^{(\text{NMI})}(\hat{\lambda}, \lambda^{(q)}).$$

 Λ : consensus partition

 $\hat{\lambda}$: a cluster of consensus partition

 $\lambda^{(q)}$: a cluster of each clustering method

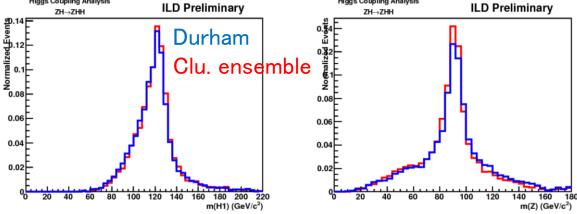

- o Global maximum is the best, but it is difficult to get it
 - It takes much CPU time
 - Instead that, looking for local maximum starting from certain clustering method


TRIAL

- Using 6 kinds of different clustering methods:
 - Durham, Jade, Geneva, LUCLUS, Kt, and Cambridge
 - Anti-Kt was not good…
- Sample: qqHH@500GeV, trying 6 jet clustering
- First, Durham clustering is performed until constructing 30 minijets
- From 30 mini-jets, those 6 clusterings are performed and get the partitions
- Trying to obtain consensus partition using mutual information approach
 - Starting from each jet clustering partition, making average mutual information maximum by changing cluster of each mini-jet one by one
- Get final jet clustering using consensus partition

FIRST TRIAL

- o qqHH→(qq)(bb)(bb): check Higgs and Z mass
- Loose b-tagging is imposed: btag>0.35 for all the bjet candidates
- MC Truth direction matching of jets is performed:
- Mass distribution:


Num. of good events with truth matching:

method	Durham	Clu. ensemble
Num. of good event	3779	3664

Due to flavor tagger? Need to check without flavor tagging…

NEED MORE IDEA

- Clu. Ensemble is going in good direction about mass dist.
 - But the result is not enough
 - need more idea…
- Higgs mass difference is slighter than Z mass difference
 - Why?
 - Vertex?
- For trial, I permit merging of jets with vertex
 - In nominal way, merging jets with vertices is almost forbid

Going better – Is there better way of vertex jet treatment??