Hadron Production in Photon-Photon Processes at International Linear Collider

31 km

ILD Software and Analysis Meeting

Swathi Sasikumar DESY, 14th Oct 2015

Main Linas

Contents

- Introduction
- Sub-Processes in Photon interactions
- Historical Background
- Pythia as a Tool
- The Theory of Cross-Sections
- Results
- Summary

Introduction

- The International Linear Collider A precision machine
 - Ideal for Higgs analysis
 - Very Clean conditions
- The International Large detector being developed to meet the precision goals of the ILC physics program.
- The Gamma-gamma background standing as the biggest challenge
- The rate of gamma-gamma interaction is million times higher than the Higgs productions

Photons in an e⁺e⁻ Collider

- e⁺e⁻ beams are accompanied by photons
 - Beamstrahlung emission of real photons in high electrical field of oncoming bunch
 - Synchrotron photons are backscattered gaining higher energy
 - Weizsaecker-Williams process emission of virtual photons which can interact with an oncoming photon or an electron
- Cross sections are large due to high interactions among particles

Sub-processes in Photon Interactions

- Direct Interactions(DIR) Real photons interacts directly
- Vector Meson Dominance(VMD) Photon fluctuates into a vector meson
- Anomalous Interactions(GVMD) Photon fluctuates into a qq pair of larger virtuality
- Deep inelastic Scattering(DIS) A process of probing the Hadrons with very high energy leptons.

Subprocesses	Cross-sections (nb)
VMD * VMD	239.2
DIR * VMD	87.52
GVMD * DIR	9.77
GVMD * GVMD	12.05

Vector Meson Dominance

- Vector meson dominance the most dominating subprocess in photon-photon processes
- A photon fluctuates into a vector meson (ρ,ω,φ, j/Ψ, Υ) (same quantum properties)
- The highest probability for the photon to fluctuate is into a Rho meson.
- Production of number of low momentum soft Hadrons.
- Pion exchange as nuclear force in protons and neutrons

Hadron Interactions in VMD

- A photon is a hadron a fraction 1/400 of the time
- Rise in gamma-gamma cross sections much similar to hadronic cross sections
- All event classes known for ordinary hadron-hadron interactions are found to occur here
- Behaves more like a Hadron collider than a lepton collider

Reference : Particle Data Group 2014

Impact of hadron overlay

- Hadron Pile up reduce precision for a few specific but important cases.
- Higgs self-coupling measurements which are very rare processes
- Signals for new particles with small mass differences (dark matter candidates)
- kT algorithm methods not sufficient to remove the overlay in these cases

Studies from Peskin, Barklow and Chen

- The Monte-Carlo programs used to model the processes at the ILC are based on theoretical approaches dating back to early 1990s.
- This is the model we partially use for simulations in ILD
- Rate of hadron production for accelerator design proposed for 500GeV linear collider evaluated using three components
 - Photon-photon Luminosity spectrum
 - Cross section for hadron production
 - Realistic detector simulation

arXiv:hep-ph/9305247v1 11 May 1993

Hadron Production in $\gamma\gamma$ Collisions as a Background for e^+e^- Linear Colliders^{*}

PISIN CHEN, TIMOTHY L. BARKLOW, AND MICHAEL E. PESKIN

Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

ABSTRACT

Drees and Godbole have proposed that, at the interaction point of an $e^+e^$ linear collider, one expects a high rate of hadron production by $\gamma\gamma$ collisions, providing an additional background to studies in e^+e^- annihilation. Using a simplified model of the $\gamma\gamma$ cross section with soft and jet-like components, we estimate the expected rate of these hadronic events for a variety of realistic machine designs.

Photon-Photon Luminosity Spectra

- The spectra entering the γγ cross section at e⁺e⁻ linear collider described in terms of photon-photon luminosity function
- Contributions from two sources -
 - Beamstrahlung (fr(x)) the energy spectrum from the real photons could be estimated from the experiments
 - Bremsstrahlung(fv(x)) The energy spectrum from the virtual photons have to be calculated theoretically

 $L_{\gamma\gamma} = f_v(x_1)f_v(x_2) + [f_v(x_1)f_r(x_2) + f_r(x_1)f_v(x_2)] + f_r(x_1)f_r(x_2)$

Total Cross Sections

- Determination of photon-photon hadronic cross sections essential for computing hadronic backgrounds
- Photon-photon total cross section proportional to ρ - ρ total cross section
- The parametrization of Amaldi et al. give cross sections as

$$\sigma(\gamma\gamma - > hadrons) = \sigma_0(1 + (630 * 10^{-3})[ln(s)^{2.1} + (1.96)s^{-0.37})$$

Swathi Sasikumar | Hadron Production in photon-photon processes | 14-10-15 | Page

Shortcomings of Barklow, Peskin Methods

- The rho meson has a mass of 770 MeV and a width of 145 MeV.
- Barklow generator produces Rho mesons of same mass and no width at all.
- Most of the events having two rho mesons have charged Rhos
- Clear indication of something wrong at the fundamental level
- Unrealistic results as a consequence reduced efficiency of ILD

Pythia 6.4 - as an event generator

• A computer simulation program for particle collisions at very high energy (fortran)

- The initial e⁻ and e⁺ s have fixed energy in Pythia. So the usage of gamma/e⁺ gamma/e⁻ beams give unrealistic results
- Usage of Gamma gamma beams with varying energy is preferred more realistic results
- Missing of Deep Inelastic scattering process trying to include by changing some parameters

The Theory of Hadronic Cross Sections

• The standard theory for calculating hadronic cross sections as per PDG:

$$\sigma^{\gamma\gamma} = \delta^2 [H \ln^2(\frac{S}{S_M^{\gamma\gamma}}) + P^{\gamma\gamma}] + R_1^{\gamma\gamma}(\frac{S}{S_M^{\gamma\gamma}})^{-\eta_1}$$

- R: Regge term defines the cross section at low energies where the interactions are explained using meson exchange
- P : Pomeronchuk term defines the cross section at higher energies where the interactions are explained using pomeron exchange.
- H: $H = \pi(\frac{\hbar c^2}{M^2})$ The Heisenberg term defines the rise in cross section with energy

(Ref: Particle data group 2014)

Total Cross Sections

- The results from Pythia very much in accordance with the standard function and the measured data.
- Data for gamma-gamma cross sections at very high energies not available
- Pythia seems to be quiet okay for evaluating gammagamma backgrounds

Shortcomings with Pythia

- Hadron productions initialized at 300MeV
- Crucial to understand processes at these energies
- Pythia cannot simulate for energies below 2.5GeV
- Trying for various solutions
 - By changing few parameters
 - Looking at Barklow's methods

Pythia as a tool

- Using Pythia to evaluate the properties of particles in the Hadronic interactions
- Plotting for Energy, Transverse Momentum and Cosine of Polar angle at 30 GeV centre of mass energy we have

Number of Particles

Summary

- Gamma-gamma background a major threat for building ILC as a precision machine
- VMD being the most dominating process give more hadronic interactions resulting into a hadron pileup
- The studies from Peskin *et al.* being used for designing the ILC but we cannot completely depend on these generators
- Pythia at this point seems to be a nice answer for understanding more about the Gamma-Gamma interactions
- Pythia at lower energies is still an issue

