

Main Linac (Un)Reliability

Nick Walker 131st ILC@DESY meeting 01.04.2016

Main Linac Tunnel Cross-Section

Based on "SLAC" "worst conceivable accident" criteria

18MW continuous power deposition into a single "point"

Main Linac Tunnel Cross-Section

Best Safety Solution:

Don't let them in!

Shielding still needed to protect equipment in service tunnel side and allow RF commissioning without beam.

(dark current and x-rays)

Why let them in in the first place?

ilr

Availability arguments

RDR/TDR: "two tunnels" cheaper than additional required linac overhead Klystron+modulator lifetimes now expected to be much higher (100k vs 40k hours)

Why let them in in the first place?

ilr

Availability arguments

RDR/TDR: "two tunnels" cheaper than additional required linac overhead Klystron+modulator lifetimes now expected to be much higher (100k vs 40k hours)

Why let them in in the first place?

ilr

Availability arguments

RDR/TDR: "two tunnels" cheaper than additional required linac overhead Klystron+modulator lifetimes now expected to be much higher (100k vs 40k hours)

• Monte Carlo simulation

- Monte Carlo simulation
- Models failure of
 - ▶ RF power chain
 - klystrons, modulators, LLRF electronics...
 - Cryomodule
 - cavity (?), tuner motor, coupler, coupler motor...
 - quadrupole, power supply etc.

- Monte Carlo simulation
- Models failure of
 - ▶ RF power chain
 - klystrons, modulators, LLRF electronics...
 - Cryomodule
 - cavity (?), tuner motor, coupler, coupler motor...
 - quadrupole, power supply etc.
- Maintenance philosophy
 - Impact of single failure ("Failure Modes & Effect Analysis")
 - How many can be tolerated (overhead)
 - How things get fixed during <u>scheduled maintenance</u>

- Monte Carlo simulation
- Models failure of
 - ▶ RF power chain
 - klystrons, modulators, LLRF electronics...
 - Cryomodule
 - cavity (?), tuner motor, coupler, coupler motor...
 - quadrupole, power supply etc.
- Maintenance philosophy
 - Impact of single failure ("Failure Modes & Effect Analysis")
 - How many can be tolerated (overhead)
 - How things get fixed during <u>scheduled maintenance</u>
- Time required to recover luminosity from unscheduled down
 - Leads to cascaded events along machine

• Input:

- Mean time to failure (MTTF)
- Lifetime Distribution Function
 - Exponential, Weibull, "bathtub", etc.

- Mean time to failure (MTTF)
- Lifetime Distribution Function
 - Exponential, Weibull, "bathtub", etc.

MTTF (hours)	TDR	TODAY
Klystron	40,000	100,000
Modulator	100,000	500,000
Power supply	100,000	500,000
Electronics	100,000	500,000

• Input:

- Mean time to failure (MTTF)
- Lifetime Distribution Function
 - Exponential, Weibull, etc.

MTTF (hours)	TDR	TODAY	
Klystron	40,000	100,000	10MW MBK vendor estimates
Modulator	100,000	500,000	
Power supply	100,000	500,000	
Electronics	100,000	500,000	

• Input:

- Mean time to failure (MTTF)
- Lifetime Distribution Function
 - Exponential, Weibull, etc.

MTTF (hours)	TDR	TODAY	
Klystron	40,000	100,000	10MW MBK vendor estimates
Modulator	100,000	500,000	Solid-state with built-in redundancy
Power supply	100,000	500,000	
Electronics	100,000	500,000	

- Mean time to failure (MTTF)
- Lifetime Distribution Function
 - Exponential, Weibull, etc.

MTTF (hours)	TDR	TODAY	
Klystron	40,000	100,000	10MW MBK vendor estimates
Modulator	100,000	500,000	Solid-state with built-in redundancy
Power supply	100,000	500,000	Solid-state with built-in redundancy
Electronics	100,000	500,000	

- Mean time
- Lifetime Dis
 - Exponential, Weibull, etc.

	9
to failure (MTTF)	
stribution Function	

ilc

MTTF (hours)	TDR	TODAY	
Klystron	40,000	100,000	10MW MBK vendor estimates
Modulator	100,000	500,000	Solid-state with built-in redundancy
Power supply	100,000	500,000	Solid-state with built-in redundancy
Electronics	100,000	500,000	???

• Input:

- Mean time to failure (MTTF)
- Lifetime Distribution Function
 - Exponential, Weibull, etc.

MTTF (hours)	TDR	TODAY
Klystron	40,000	100,000
Modulator	100,000	500,000
Power supply	100,000	500,000
Electronics	100,000	500,000

10MW MBK vendor estimates Solid-state with built-in redundancy Solid-state with built-in redundancy ??? 100 kh = 11.4 years

_ilc

A simplified (analytical) approach

- Consider reliability due only to Main Linac RF system
 - Klystron Modulator Power supply controls
- Failure of any one -> failure of RF station
 - 39/26 cavities or 1275/850 MeV of energy

MTTF of an RF station

"Survival" curve of an RF station

Assuming simple exponential distribution MTTF = 62.5 khrs

Reliability

- Probability that something will run for a given time.
- What is the probability that one or more RF stations will fail before the next routine maintenance period (assumed T = 14 days = 336 h)
- Average rate of failure per period T:

		Baseline	Lumi Upgrade
Number of RF stations		186	279
LE per station	GeV	1.27	0.85
inal beam energy	GeV		253.5
Overhead			1.4%

$\mathcal{R}_{\texttt{fail}}$ =	N _{RFS}	Τ /	$\mathbf{MTTF}_{\mathbf{RFS}}$
---------------------------------	------------------	-----	--------------------------------

$$\mathcal{R}_{fail} = 1$$
 1.5 for T=14 days

__ilc

Probability of RF N_{fail} station failures

Poisson distribution with $\mu = 1.0$ (baseline, 1.5 upgrade) failures per 14 days

Reliability of ML with N_{spare} spare RF stations

Cumulative distribution function

Reliability is the probability that $N_{\text{fail}} \leq N_{\text{spare}}$

_ilc

A more interesting question

- What is the reliability of operation for a given E_{CM} ?
- I.e. what is the probability that our beams will collider uninterrupted at E_{CM} for 14 days.
 - Due only to the ML RF
 - (Many other systems affect this reliability)
- Easy to figure out from our last plot, by squaring the probability (2 linacs!) and transforming the x-axis as

$$N_{spare} \rightarrow 2 \Big[E_0 + \Delta E \Big(N_{total} - N_{spare} \Big) \Big]$$

Reliability of E_{cm} operation due to ML RF

ilr

Reliability of E_{cm} operation due to ML RF

Impact of routine maintenance schedule

20

0

490

Impact of routine maintenance schedule

ECM (GeV)

505

495

500

500.0 GeV operation additional (spare) RF stations

	90%	95%	98%
14 days	2	2	3
21 days	3	3	4
28 days	4	4	5

	90%	95%	98%
14 days	1	2	2
21 days	2	3	4
28 days	4	4	5

GIGO revisited

- Only considered Reliability due to RF stations in ML
 - Many other subsystems can cause downtime which will add to this.
 - ▶ All subsystems in ILC will need a high availability

- Only considered Reliability due to RF stations in ML
 - Many other subsystems can cause downtime which will add to this.
 - ► All subsystems in ILC will need a high availability
- Reliability defined as probability that we are up until next maintenance period
 - Clearly if we lost all our spares we would just bring MD forward

- Only considered Reliability due to RF stations in ML
 - Many other subsystems can cause downtime which will add to this.
 - ► All subsystems in ILC will need a high availability
- Reliability defined as probability that we are up until next maintenance period
 - Clearly if we lost all our spares we would just bring MD forward
- AVAILSIM calculated Availability
 - Includes mean time to repair and mean time for recovery.

- Only considered Reliability due to RF stations in ML
 - Many other subsystems can cause downtime which will add to this.
 - ► All subsystems in ILC will need a high availability
- Reliability defined as probability that we are up until next maintenance period
 - Clearly if we lost all our spares we would just bring MD forward
- AVAILSIM calculated Availability
 - Includes mean time to repair and mean time for recovery.

- Only considered Reliability due to RF stations in ML
 - Many other subsystems can cause downtime which will add to this.
 - ▶ All subsystems in ILC will need a high availability
- Reliability defined as probability that we are up until next maintenance period
 - Clearly if we lost all our spares we would just bring MD forward
- AVAILSIM calculated Availability
 - ▶ Includes mean time to repair and mean time for recovery.
- Bottom line: does not look bad providing quoted MTTF can be achieved.
 - ▶ Very simplistic model for "educational" purposes only