

Features of These Past Weeks

- Added H→Zγ sample for further check of model independece study
- Re-investigated necessity of several cuts (Ptsum, cosθmissing, cosθZ)
- Improved Bias Situation
- Finalizing papers on Higgs Recoil Analysis and its Model Independence
- Began on BSM studies (with Tanabe-san)

Higgsino pair production measurement:

ECM= 500 GeV: χ 02 pair, χ 01 + χ 02, χ ±1

benchmarks ILC1 ($\Delta M \sim 20 \text{ GeV}$) and ILC2 ($\Delta M \sim 10 \text{ GeV}$)

Added $H \rightarrow Z \gamma$ mode

In order to investigate potential effect of some exotic non-SM decay mode

even after all the fluctuations and assumptions on unknown non-SM modes are applied, the realistic bias is still very small

- For majority of the cases, $H \rightarrow Z\gamma$ has less bias than $H \rightarrow \gamma\gamma$
- at first, Ptsum effect on H→Zγ is high for the lowest ECM=250 GeV
- Motivated me to re-investigate if I can sacrifice Ptsum cut (details on next page)
- mistaken lepton ID (e <--> mu) is slightly higher for H→ Z γ mode this issue is similar for all ECMs.

Decided to Remove Cos θ Z cut

CosθZ is already in TMVA cut, so not sensible to have a separate cosθZ cut?

There seems to be no significant degradation in precisions

Signal efficiency rise by 6-7% for Zmm and 2-3% for Zee !!!!!

Cannot Remove Cos θ missing cut

- If remove cosθmissing cut, there will be significant degradation in precision, even after attempts to re-optimize TMVA
- now we have no Ptsum, no Ptdl in TMVA, so need at least one variable to remove residual 2f BG
- Besides, cosθmissing is not causing huge mode bias (a protection is placed)

250GeV	cosZ	xsec	mass
Zmm	yes	3.18%	38.8
Pol L	no	3.15%	38.9
-			
Zee	cosZ	xsec	mass
Pol L	yes	4.07%	127
	no	3.97%	120
Zmm	cosZ	xsec	mass
Pol R	yes	3.68%	42.9
	no	3.64%	43.5
Zee	cosZ	xsec	mass
Pol R	yes	4.84%	?
	no	4.73%	147

Decided to Remove Ptsum cut

- There seems to be no huge degradation in precisions compared to statistic fluctuations
- still need Ptsum for ECM = 500 GeV, some of the channels
- bias is less at higher ECM, so should be allowed

delta means de	viation of "	final efficier	ncy" from "avera	age efficien	cy" (not weighte	d)
250GeV						
Zmm	Ptsum	xsec	mass	del	ta_aa delt	a_az
		0	3.18%	38.8	-0.1	0.53
L		2	3.17%	38.3	-0.07	0.6
		4	3.15%	38.5	0.04	0.79
		6	3.14%	38	0.26	1.07
		8	3.13%	38.1	0.56	1.59
		10	3.12%	<mark>37.8</mark>	0.96	2.19
250GeV						
Zee	Ptsum	xsec	mass	del	ta_aa delt	:a_az
L		0	4.07%	<mark>127</mark>	0.75	0.48
		2	4.06%	<mark>127</mark>	0.77	0.52
		4	4.03%	<mark>125</mark>	0.83	0.64
		6	4.01%	<mark>125</mark>	1.27	1.27
		8	4.03%	<mark>125</mark>	1.16	1.16
		10	3.99%	<mark>124</mark>	1.42	1.64

The residual Higgs decay mode bias is very small!!

Syst error on xsec : $\sigma = N/L/\varepsilon$:: $\Delta \sigma/\sigma = \Delta \varepsilon/\varepsilon$

observe deviation from average efficiency

Cut Efficiency Table, @ 250 GeV, Pol (-0.8,+0.3)

Zmm	BR	eff(final)	deviation
bb	57.800%	0.8506	1E-04
cc	2.680%	0.85	-0.0005
gg	8.560%	0.8464	-0.0041
tt	6.370%	0.851	0.0005
ww	21.600%	0.8491	-0.0014
ZZ	2.670%	0.851	0.0005
aa	0.230%	0.8493	-0.0012
az	0.155%	0.8429	-0.0076
	sum(avgEff)	0.850	

Zee	BR	eff(final)	deviation
bb	0.578	0.6346	0.003
СС	0.0268	0.6308	-0.0008
gg	0.0856	0.6279	-0.0037
tt	0.0637	0.6274	-0.0042
ww	0.216	0.6253	-0.0063
ZZ	0.0267	0.6263	-0.0053
aa	0.0023	0.6187	-0.0129
az	0.00155	0.622	-0.0096
	sum(avgEff)	0.632	

final efficiency

(statistical uncertainty = 0.16%) no visible bias beyond 1 sigma

Largest bias is carried by $H \rightarrow \gamma \gamma$ (aa) most of the time (sometimes $H \rightarrow Z \gamma$)

similarly very small deviation for all other channels, bias even smaller for higher ECM

Lepton Pair Candidate Selection

opposite +/- 1 charge

- E_cluster / P_total : $\langle 0.5 (\mu) \rangle / \rangle 0.9 (e)$
- isolation (small cone energy)
- Minv closest to Z mass
- χ 2 minimization based on Minv and Mrecoil
- $|D0/\delta D0| < 5$
- FSR and bremsstrahlung recovery

Final Selection

- 73 < GeV < M_inv < 120 GeV
- 10 GeV < pt dl < 140 GeV

•
$$\left| \overrightarrow{P_{t,sum}} \right| \equiv \left| \overrightarrow{P_{t,\gamma}} + \overrightarrow{P_{t,dl}} \right| >$$
10 GeV

- $|\cos(\theta_{missing})| < 0.98$
- $|\cos(\theta_z)| < 0.9$
- 100 GeV < Mrecoil < 200 GeV

TMVA cut

Example of ECM=350 GeV,

Data selections designed to guarantee Higgs decay mode independence

Optimized in terms of signal significance and xsec measurement precision

definition

- M inv: invariant mass of 2 muons
- pt_dl : pt of reconstructed lepton pair
- pt,γ: pt of most energetic photon
- θ _missing = polar angle of undetected particles
- θ Z = Z production angle

- Effective for cutting $\mu \mu$ / ee BG
- Use info of most energetic photon (pt_{_}γ , cone energy)
- "protection limits" have been placed to minimize bias on signal

red box:

key improvements w.r.t. previous studies

similar methods applied to all ECM and polarizations

Taking into account of unknown exotic decay modes!

- any exotic decay modes should resemble these wide kinematic range of SM modes **Strategy:**
- (1) assign 10% of "unknown mode" to one of the known SM modes
- (2) fluctuate remaining SM modes by the largest BR uncertainty predicted from HL-LHC (7-8%) (Ref: snowmass report from higgs working group, arXiv: 1310.8361)

Pushing all 10% (big ratio!) of an unknown decay mode to a certain signature is a very pessimistic (conservative) assumption

Here bias is (BR of exotic mode) * (eff of exotic mode - eff_avg)

relative syst error on $\sigma ZH = maximum bias relative to avg efficiency$

at ECM = 250 GeV

< 0.1 % for Zmm ~ 0.2% for Zee

This is the most realistic evaluation of bias !!

conclusion: current systematic error is well below even the best statistical uncertainty expected from full H20 run

Extensive efforts have been made to reduce systematic error to this stage!!