The cluster uncertainties

Mikael Berggren ${ }^{1}$

${ }^{1}$ DESY, Hamburg

ILD phone meeting, 28 Oct 2015
if
-

Outline

(1) Introduction
(2) Error propagation
(3) Checking the math
(4) Classes and processors
(5) Conclusions

Introduction

The problem:

- Clusters are measured
- Hence, their properties should be assigned errors
- Specifically, they have a
- Total magnitude (ie. Energy)
- Position
- Direction
- The error on the energy will come from parametrisation of simulation and test-beam observations.
- The Position and Direction error - in contrast - are measurable in each cluster

Cluster direction

The problem:

- A Cluster is a set of points in space (possibly with an attached weight).
- The direction of the cluster - or the cluster axis - would naturally be the direction that minimises the distance between the axis and the points.
- This can be shown to be the eigen-vector corresponding to the largest eigen-value of the estimated covariance matrix C^{*}. (This is non-trivial to prove !!!)
- It can also be shown that the covariance matrix and the tensor of inertia have the same eigen-vectors, but eigen-values in the opposite order (This is a bit less non-trivial to prove !!!)
(1/" n " because it's a bit more complicated than just that for weighted points...)

Cluster direction

The problem:

- A Cluster is a set of points in space (possibly with an attached weight).
- The direction of the cluster - or the cluster axis - would naturally be the direction that minimises the distance between the axis and the points.
- This can be shown to be the eigen-vector corresponding to the largest eigen-value of the estimated covariance matrix C^{*}. (This is non-trivial to prove !!!)
- It can also be shown that the covariance matrix and the tensor of inertia have the same eigen-vectors, but eigen-values in the opposite order (This is a bit less non-trivial to prove !!!)
- Also: $C^{*} / " n "$ is the correlation matrix of the position of the cluster. ($1 / " n$ " because it's a bit more complicated than just that for weighted points...)

Error propagation

The problem:

- In general: $V=\Delta C^{\prime} \Delta^{T}$ where Δ is the derivatives of the variables V pertains to wrt those actually measured. C^{\prime} is the covariance between the measurements.
- In our case: Δ are the derivatives of θ and ϕ wrt. the elements of C^{*}.
- C^{\prime} is in our case the "covariance-of-covariance", denoted by ζ.
- C^{*} is a symmetric 3×3 matrix, ie. it has 6 unique elements.
- ζ is thus 6×6, still symmetric $\Rightarrow 21$ unique elements.
- Δ is 6×2, so that V indeed is 2×2

Error propagation: Δ

Each row i of Δ is

$$
\left(\begin{array}{cc}
\frac{\cos \psi}{\sin \theta\left(\lambda-\lambda_{2}\right)} \bar{u}_{2}^{T} \delta C_{i} \bar{u}-\frac{\sin \psi}{\sin \theta\left(\lambda-\lambda_{3}\right.} \bar{u}_{3}^{T} \delta C_{i} \bar{u} & \ldots \\
\frac{\sin \psi}{\left(\lambda-\lambda_{2}\right)} \bar{u}_{2}^{T} \delta C_{i} \bar{u}+\frac{\cos \psi}{\left(\lambda-\lambda_{3}\right)} \bar{u}_{3}^{T} \delta C_{i} \bar{u} & \ldots
\end{array}\right)
$$

which is highly non-trivial to show.
\bar{u} and λ is the main axis and the corresponding eigen-value, while $\bar{u}_{2,3}$ and $\lambda_{2,3}$ are the other two eigen-vectors/values.
At least, δC_{i}, which is the derivative of C^{*} wrt. each of the six unique elements of C^{*} is is trivial $=3 \times 3$ matrices with one or two " 1 ":s, the rest are " 0 ":es....

Error propagation: ζ

The 21 elements of ζ :

- These are the variances of the estimate of each of the six unique elements of C^{*} along the diagonal.
- The off-diagonal elements contains things like $\operatorname{Cov}\left(V_{x}^{*}, C_{y z}^{*}\right)$ etc.
- Under the assumption that different points in the cluster are independent (ie. no cross-talk), this can be calculated.
- The elements of ζ will be combinations of different elements of C^{*} with each other, and with all possible fourth-moments of the distribution of points $\left(M_{4}\right)$.

Error propagation: ζ

In the "simple" case with un-weighed points:

$$
\tilde{\zeta}_{i j}=\left(C_{i n d(i, 1), i n d(j, 1)} C_{i n d(i, 2), i n d(j, 2)}+C_{i n d(i, 1), i n d(j, 2)} C_{i n d(i, 2), i n d(j, 1)}\right) \frac{1}{n-1}
$$

where $\tilde{\zeta}$ is the approximation of ζ when the fourth moments are not available (= the exact answer if the distribution is a 3D Gaussian). If they are, then
$\zeta_{i j}=\frac{1}{n}\left(\tilde{\zeta}_{i j}+M_{i n d(i, 1), i n d(i, 2), i n d(j, 1), i n d(j, 2)}-C_{i n d(i, 1), i n d(i, 2)} C_{i n d(j, 1), i n d(j, 2)}\right)$
The index array (ind) is

$$
i^{i n d^{T}}=\left(\begin{array}{llllll}
x & y & z & x & x & y \\
x & y & z & y & z & z
\end{array}\right)
$$

Error propagation: Weights

In fact, the points have weights. Weights can be of two types:

- Importance weights.
- Sampling weights.

The latter \Leftrightarrow points are entries in a 3D histogram doesn't change anything, except that the bin-width uncertainty needs to be added in quadrature when looking at pulls.
In the former case, the weights must be tracked through the calculations.

Error propagation: Weights

The result:

$$
\begin{aligned}
C_{i j}^{*} & =\frac{\Sigma\left(\xi^{(i)}-\left\langle\xi^{(i)}\right\rangle\right)\left(\xi^{(j)}-\left\langle\xi^{(j)}\right\rangle\right) w_{i}}{f_{1}(n-1)} \\
\zeta_{m n r v} & =\frac{\left(f_{4}+\frac{f_{3}-f_{4}}{n-1}\right)\left(M_{m n r v}-C_{m n} C_{r v}\right)+f_{3}\left(C_{m r} C_{n v}+C_{m v} C_{n r}\right) \frac{1}{(n-1)}}{n\left(f_{1} f_{2}\right)^{2}} \\
M_{m n r v} & =\frac{\Sigma\left(\xi_{i}^{(m)}-\left\langle\xi^{(m)}\right\rangle\right)\left(\xi_{i}^{(n)}-\left\langle\xi^{(n)}\right\rangle\right)\left(\xi_{i}^{(r)}-\left\langle\xi^{(r)}\right\rangle\right)\left(\xi_{i}^{(v)}-\left\langle\xi^{(v)}\right\rangle\right) w_{i}+f_{5} \frac{1}{3}\left(C_{m n} C_{r v}+C_{m r} C_{n v}+C_{m v} C_{n r}\right)}{f_{6}(n-4)}
\end{aligned}
$$

where the factors are

$$
\begin{array}{lr}
f_{1}=\frac{\Sigma w_{i}-\frac{\Sigma w_{i}^{2}}{\Sigma w_{i}}}{n-1} \\
f_{3}=\frac{2\left[\left(\left(\Sigma w^{2}\right)^{2}-\Sigma w^{4}\right)\right]}{2 n(n-1)} & f_{4}=\frac{4\left(\Sigma w^{2}(\Sigma w)^{2}-2 \Sigma w^{3} \Sigma w+2 \Sigma w^{4}-\left(\Sigma w^{2}\right)^{2}\right)}{n n} \\
f_{5}=\frac{1}{2(\Sigma w)^{3}}\left(2 \Sigma w\left(\Sigma w \Sigma w^{2}-\Sigma w^{3}\right)-3\left(\Sigma w^{2}\right)^{2}+3 \Sigma w^{4}\right) & f_{6}=\frac{1}{(\Sigma w)^{3}} \frac{\left.(\Sigma w)^{4}-4(\Sigma w)^{2}\left(\Sigma w^{2}\right)+6 \Sigma w \Sigma w^{3}-3 \Sigma w^{4}\right)}{n-4}
\end{array}
$$

Checking the math

- All coded in Fortran95 (10 statements ...)
- Check with sets of points from known distributions.
- Gaussian or not
- High stat/low stat
- Binned or un-binned.
- Almost spherical/cigar-shaped
- Different directions.
- All OK, both pulls on θ and ϕ, on the elements and correlations of C^{*}.
- Check clusters in DBD simulation:
- Run RecomCTruthLinker with all options switched on - Most notably CalohitMCTruthLink.
- Write out true id and momentum for all $\gamma: s$ and K_{L}^{0} from generator that creates hits, followed by xyz and E of each hit.
- Read back and calculate errors, plot θ and ϕ pulls.

Checking the math: pulls on real clusters

- Pulls for the γ clusters.
- Pulls for the K_{L}^{0} clusters.

Checking the math: pulls on real clusters

- Pulls for the γ clusters.
- Pulls for the K_{L}^{0} clusters.

Classes and processors

This implemented into MARLIN as:

- One MarlinUtil class: WeighedPoints3D.
- One MarlinReco processor : AddClusterProperties (in ANALYSIS)
They can be found in the SVN head of the marlin project, as of last week-end.

Classes and processors: WeighedPoints3D

WeighedPoints3D has methods to return the covariance matrix of the C.O.G., all eigen-values and -vectors with errors.
It has two c'tor:s:

```
WeightedPoints3D(int nhits, double* a,
    double* x, double* y, double* z);
WeightedPoints3D(const std::vector<double> &cog,
    const std::vector<double> &cov,
    const std::vector<double> &mayor_axis_error =
        std::vector<double>() ,
    int npnt = 0 ,double wgtsum =0.0 ,
    double wgt2sum=0.0 , double wgt4sum=0.0 );
```

The first calculates using the hits \Rightarrow Needs the calo-hits.
The second one takes a cluster position with covariance + possibly other shape-descriptors, and can return other stuff (eigen-values and -vectors with errors ...) \Rightarrow Does not need calo-hits.

Classes and processors: AddClusterProperties

- AddClusterProperties is a Marlin processor. Only inputs: PFO and Cluster collection-names (defaults: PandoraPFOs and PandoraClusters), but the calo-hits must be in the event (throws StopProcessingException if not)
and ϕ, with their covariance matrices . Then:
- In addition, three shape-parameters are added to any pre-existing ones ("npoints","sum_wgt2" and "sum_wgt 4̂").
\square
returns 0, it also calculates this from assumed numbers for ECal and HCal, and the seen $\mathrm{E}_{\text {ECal }}$ and total E.

Classes and processors: AddClusterProperties

- AddClusterProperties is a Marlin processor. Only inputs: PFO and Cluster collection-names (defaults: PandoraPFOs and PandoraClusters), but the calo-hits must be in the event (throws StopProcessingException if not)
- It uses WeighedPoints3D to calculate the cluster C.O.G. and θ and ϕ, with their covariance matrices. Then:

```
clu->setPosition(Position);
clu->setPositionError(&PositionError[0]);
clu->setITheta(theta);
clu->setIPhi(phi);
clu->setDirectionError(&DirectionError[0]);
```

- In addition, three shape-parameters are added to any pre-existing ones ("npoints","sum_wgt2̂" and "sum_wgtĥ").
from assumed numbers for ECal and HCal, and the seen $E_{\text {ECal }}$ and total E.

Classes and processors: AddClusterProperties

- AddClusterProperties is a Marlin processor. Only inputs: PFO and Cluster collection-names (defaults: PandoraPFOs and PandoraClusters), but the calo-hits must be in the event (throws StopProcessingException if not)
- It uses WeighedPoints3D to calculate the cluster C.O.G. and θ and ϕ, with their covariance matrices. Then:

```
clu->setPosition(Position);
clu->setPositionError(&PositionError[0]);
clu->setITheta(theta);
clu->setIPhi(phi);
clu->setDirectionError(&DirectionError[0]);
```

- In addition, three shape-parameters are added to any pre-existing ones ("npoints","sum_wgt2̂" and "sum_wgt 4 ").
- NB If clu->getEnergyError () returns 0 , it also calculates this from assumed numbers for ECal and HCal , and the seen $\mathrm{E}_{E C a l}$ and total E .

Classes and processors: AddClusterProperties

- It then loops all PFOs to add the covariance matrix of the 4-momentum to neutrals. NB: Only for "typical" neutrals, ie. made of one cluster, no tracks.
- It does this assuming the neutral originates at $(0,0,0)$, ie. the 3 -momentum is in the direction of the vector to the cluster-C.O.G. The uncertainty on the direction is from
- The magnitude of the momentum is obtained by clu->getEnergy (), with error from clu->getEnergyError().
- The total error from C.O.G. position and energy is propagated to the covariance of the 4-momentum.
- Then finally:

Classes and processors: AddClusterProperties

- It then loops all PFOs to add the covariance matrix of the

4-momentum to neutrals. NB: Only for "typical" neutrals, ie. made of one cluster, no tracks.

- It does this assuming the neutral originates at $(0,0,0)$, ie. the 3 -momentum is in the direction of the vector to the cluster-C.O.G. The uncertainty on the direction is from clu->getPositionError().
- The magnitude of the momentum is obtained by clu->getEnergy (), with error from clu->getEnergyError().
- The total error from C.O.G. position and energy is propagated to the covariance of the 4-momentum.

Classes and processors: AddClusterProperties

- It then loops all PFOs to add the covariance matrix of the

4-momentum to neutrals. NB: Only for "typical" neutrals, ie. made of one cluster, no tracks.

- It does this assuming the neutral originates at ($0,0,0$), ie. the 3 -momentum is in the direction of the vector to the cluster-C.O.G. The uncertainty on the direction is from clu->getPositionError().
- The magnitude of the momentum is obtained by clu->getEnergy (), with error from clu->getEnergyError().
- The total error from C.O.G. position and energy is propagated to the covariance of the 4-momentum.
- Then finally:

$$
\begin{aligned}
& \text { part }->\text { setMomentum }(m o m) ; \\
& \text { part }->\text { setCovMatrix }\left(p _c o v _v\right) ;
\end{aligned}
$$

Checking Classes and processors: pulls PFO 4-mom

- Pulls PFO energy of γ :s.
- Pulls PFO \boldsymbol{p}_{x} of $\gamma: s$.
- Pulls PFO energy of $K_{L}^{0}: s$.

- NB: A number of tricks needed to figure out what the true value should be!

Checking Classes and processors: pulls PFO 4-mom

- Pulls PFO energy of $\gamma:$ s.
- Pulls PFO energy of $K_{L}^{0}:$ s.
- Pulls PFO p_{x} of $K_{L}^{0}: s$.
- NB: A number of tricks needed to figure out what the true value should be!

Checking Classes and processors: pulls PFO 4-mom

- Pulls PFO energy of $\gamma:$ s.
- Pulls PFO n_{x} of $\gamma: s$.
- Pulls PFO energy of $K_{L}^{0}:$ s.
- Pulls PFO p_{x} of $K_{L}^{0}: s$.
- NB: A number of tricks needed to figure out what the true value should be!

Conclusions

- Math of the general problem to determine errors on the direction of the mayor axis of weighted 3D point distributions worked out.
- Position and direction with covariances of clusters can now be evaluated using WEIGHEDPOINTS3D.
- These can be added to the clusters in the event with the Marlin processor AddClusterProperties.
- ADDCLUSTERPROPERTIES also adds 4-momentum with correlation matrix the neutral PFOs.
- Outlook: LCNote and/or publication of the math to come.

Conclusions

- Math of the general problem to determine errors on the direction of the mayor axis of weighted 3D point distributions worked out.
- Position and direction with covariances of clusters can now be evaluated using WeighedPoints3D.
- These can be added to the clusters in the event with the Marlin processor AddClusterProperties.
- AddClusterProperties also adds 4-momentum with correlation matrix the neutral PFOs.
- Outlook: LCNote and/or publication of the math to come.

Conclusions

- Math of the general problem to determine errors on the direction of the mayor axis of weighted 3D point distributions worked out.
- Position and direction with covariances of clusters can now be evaluated using WeighedPoints3D.
- These can be added to the clusters in the event with the Marlin processor AddClusterProperties.
- AddClusterProperties also adds 4-momentum with correlation matrix the neutral PFOs.
- Outlook: LCNote and/or publication of the math to come.

