MORE EXPLANATION OF SELF-ORGANIZED MAPPING FOR JET CLUSTERING AND TRYING SOME JET CLUSTERING PATTERNS Masakazu Kurata 12/18/2015

INTRODUCTION

- SOM is one of an "unsupervised" neural network
 - Original idea can be got everywhere Please check them!
- o Looking for "winner" nodes
 - choose output node whose weight vector is similar with input data
 - This node is called as best matching unit(BMU)
- Adjusting the weight vector towards the input vector
 - Both BMU and the nodes which are close to BMU
 - Update formula: $w_j(t+1) = w_j(t) + \alpha_t(x w_j(t)),$
 - α_{t} : neighborhood function(distance between BMU and other nodes)

2

o Overall procedure

PROCEDURE

Default: Durham result(e.g. p1 and p2 belong to P1, p3 belong to P2)

- w11=1.0, w21=0.0
- w12=1.0, w22=0.0
- w13=0.0, w23=1.0

Epoch 1: 0

- For each input node:
 - Look for winner
 - o Update the weights

Epoch 2000(train end):

- For each input node:
 - Look for winner
 - o Update the weights

Input Layer

Output Layer

Input Layer

Output Layer

Repeat until status becomes stable 0

Reference jet 4-momentum: $P_i = \sum w_{ij} \cdot p_j$, $0 \le w_{ij} \le 1$ 0

• "winner" node is decided using traditional distance measure

• wij is changed at each epoch:

- Updating formula: $w_{ij}(t+1) = w_{ij}(t) + \alpha_t(1.0 w_{ij}(t))$
- α t shrinks gradually with epoch(repeated time)
- Weight sum constraint: $\sum_i w_{ij} = 1$

PROCEDURE OF SOM FOR JET CLUSTERING

- 1. Track is clustered until certain y-value using Durham
 - Each mini-jet is a input data for SOM
- 2. Default output vectors are result of Durham jet clustering
- 3. Choose BMU for a mini-jet p_i
 - Using distance measure of Jade with output vectors
- 4. Update weights of BMU and neighborhood output nodes
 - $w_{ij}(t+1) = w_{ij}(t) + \alpha_t(1.0 w_{ij}(t))$
 - Using distance measure of Jade between BMU and other output nodes
 - α t shrinks gradually with epoch
- 5. 3. and 4. are performed for all the input data(mini-jets)
- 6. 5. is performed many times(called as "epoch")
- After the training, each mini-jet is assigned to the output node which has smallest Jade distance measure
 - Node is regarded as a 'jet'

TRYING SOME PATTERNS

SOM BASELINE

SOM RESULTS

- Using qqhh \rightarrow qq(bb)(bb): 6 jet clustering(6 output nodes)
 - Use same event as original Durham clustering
 - Jet matching with <u>MC truth is performed</u>

(E(MC)-E(jet))/E(MC)

SOM USING 4JETCLU RESULTS

- o Using qqhh→qq(bb)(bb): 6 jet clustering(6 output nodes)
 - Use same event as original Durham clustering
 - Jet matching with MC truth is performed

0.4 0.6 0.8

(E(MC)-E(jet))/E(MC)

0.2

-0.2

SOM+CHI2 RESULTS

- O Using qqhh→qq(bb)(bb): 6 jet clustering(6 output nodes)
 - Use same event as original Durham clustering
 - Jet matching with MC truth is performed

-0.8

-0.6 -0.4

-0.2 0

0.2 0.4 0.6 0.8

(E(MC)-E(jet))/E(MC)

WE ARE AFRAID IF

• Mass resolution will become better, but… if

No... Improvement should be addressed in terms background separation as well (more importantly in λ_{HHH} analysis) take a look at background vvZH @ 500 GeV #Jet = 4#Iet = 6[Aeb] 140 (H)W 120 [∧¹⁶⁰ 140 (²) 120 M(H) [GeV] M(H) [GeV]

just using mass to pair jets is completely a disaster...

DURHAM - SIGNAL V.S. ZZH Using qqHH and ZZH

• Use events \sim 12000(signal) v.s. \sim 40000(ZZH)

signal ZZH

Btag>0.30 for 4 jets

SOM - SIGNAL V.S. ZZH • Using qqHH and ZZH • Use events \sim 12000(signal) v.s. \sim 40000(ZZH)

signal ZZH

Btag>0.30 for 4 jets

SOM USING 4 JETCLU - SIGNAL V.S. ZZH • Using qqHH and ZZH

• Use events \sim 12000(signal) v.s. \sim 40000(ZZH)

signal ZZH

Btag>0.30 for 4 jets

SOM+CHI2 - SIGNAL V.S. ZZH O Using qqHH and ZZH

• Use events \sim 12000(signal) v.s. \sim 40000(ZZH)

signal ZZH

Btag>0.30 for 4 jets

CHECK NUM. OF EVENTS USING SOME SOM PATTERNS

- Trying some patterns using SOM and mass constraint
- Check MC matching(all the direction of quarks are matched with reco. jets) and btag(>0.30) cut
- MC matching events is slightly increased using SOM
- All the patterns have almost same num. of events with btag cut
 - 8→6 clustering makes unnatural clustering possible, so num. of events is slightly decreased

Method	MCMatch	Btag>0.30	Note
SOM	6278	6165	Baseline, bias free
SOM using 4jetclu	6254	6181	best JER, but will have small bias
SOM + chi2	6211	6184	Best mass reso., but will have large bias
8→6 + SOM	6175	6078	Unnatural clustering is possible, and bias
Org. Durham	6178	6189	Nominal so far, bias free

CHECK NUM. OF EVENTS USING CHI2 CUT

- How many events are remained using chi2 cut?
 - Compare between some SOM patterns and orig. Durham
 - Check S/N simply which one is best?
- Mass reso. and bias are trade-off
 - As long as using mass constraint only
- Mass reso. advantage? or small bias?
 - Full analysis necessary?? What is a good estimator?

qqHH	Btag>0.30	Chi2<5.0	Chi2<10.0	Chi2<15.0
SOM use4jetclu	6181	4110	5217	5634
SOM + chi2	6184	4293	5268	5692
SOM	6165	3933	5049	5516
Org. Durham	6189	3645	4800	5322
ZZH	Btag>0.30	Chi2<5.0	Chi2<10.0	Chi2<15.0
ZZH SOM use4jetclu	Btag>0.30 3301	Chi2<5.0 1047	Chi2<10.0 1906	Chi2<15.0 2412
ZZH SOM use4jetclu SOM + chi2	Btag>0.30 3301 3309	Chi2<5.0 1047 1147	Chi2<10.0 1906 1966	Chi2<15.0 2412 2432
ZZH SOM use4jetclu SOM + chi2 SOM	Btag>0.30 3301 3309 3300	Chi2<5.0 1047 1147 1016	Chi2<10.0 1906 1966 1872	Chi2<15.0 2412 2432 2358

PROBLEMS AND PROSPECTS

o Problems

- SOM method doesn't reflect physics perfectly…
 I don't know why only Jade can obtain such results…
- I don't know the arrangement for jet clustering is good…
- In the case of backgrounds, especially ZZH
- In the case of other processes
 - Can obtain similar result?
- Physics process specific

o Prospects if OK:

- Improvement of the choice of default output vectors
 - Using Matrix element? Only mass is not enough?
 - 12→6 for example → seems bad…
- Optimization of several parameters
 - Neighborhood function
 - Learning rate
 - Mass resolution(σ) for mass constraint
 - o Etc.

• Hope for jet clustering improvement??

SOM USING 4 JETCLU – TTBAR • Using Durham or SOM4jetsclu • Use events \sim 40000(signal)

SOM4jetclu Durham

Btag>0.30 for 2 jets

SOM + CHI2 - TTBAR • Using Durham or SOMchi2 • Use events \sim 40000(signal)

SOMchi2 Durham

Btag>0.30 for 2 jets

CHECK USING CHI2 CUT

o In SOM, basically Jade will obtain the best result!!

- But worth trying in some patterns
- o 6jet clustering
 - Using Durham, Jade, LUCLUS, and Geneva
 - Using mass constraint, min χ 2 jet clustering result is used
 - 1. Use Jade only for SOM distance measure
 - 2. Use corresponding jet clustering for SOM distance measure
 - e.g.) Durham jets have min. $\chi 2 \rightarrow$ use Durham distance measure in SOM

o 8jet clustering

	<u> </u>	•	
	MCMatch	Btag>0.30	
SOM	6278	6165	Baseline, bias free
6+Jade SOM	6254	6181	best JER, but will have small bias
SOM +chi2	6211	6184	Best mass reso, but Will have large bias
6+correspond SOM	6228	6155	Jade is best?, small bias
8+Jade SOM	6175	6078	Unnatural clustering is possible, and bias
Org. Durham	6178	6189	Nominal so far, bias free