correlations between λ_{HHHH} and g_{HHVV} , g_{HVV}

Junping Tian (KEK)

Asian Physics & Software Group Meeting, Dec. 18, 2015

double Higgs production

• how the uncertainties of g_{HHVV} and g_{HVV} become systematic errors of λ_{HHH} measurement?

parametrisation

$$\sigma = S\kappa_{\lambda}^{2} + Q\kappa_{q}^{2} + B\kappa_{b}^{2} + I_{SQ}\kappa_{\lambda}\kappa_{q} + I_{SB}\kappa_{\lambda}\kappa_{b} + I_{QB}\kappa_{q}\kappa_{b}$$

 $κ_{\lambda}$: coupling $λ_{HHH}$ scaled to SM value

κ_q: coupling HHVV scaled to SM value

кь: coupling HVV scaled to SM value

S: contribution from λ_{HHH} diagram

Q: contribution from quartic HHVV diagram

B: contribution from HVV diagram

I_{SQ}: interference between diagrams with λ_{HHH} and HHVV

I_{SB}: interference between diagrams with λ_{HHH} and HVV

IQB: interference between diagrams with HHVV and HVV

(values calculated by physsim)

dσ/dM(HH) for each term: ZHH @ 500 GeV

$$\sigma = S\kappa_{\lambda}^{2} + Q\kappa_{q}^{2} + B\kappa_{b}^{2} + I_{SQ}\kappa_{\lambda}\kappa_{q} + I_{SB}\kappa_{\lambda}\kappa_{b} + I_{QB}\kappa_{q}\kappa_{b}$$

dσ/dM(HH) for each term: vvHH@1 TeV

$$\sigma = S\kappa_{\lambda}^{2} + Q\kappa_{q}^{2} + B\kappa_{b}^{2} + I_{SQ}\kappa_{\lambda}\kappa_{q} + I_{SB}\kappa_{\lambda}\kappa_{b} + I_{QB}\kappa_{q}\kappa_{b}$$

dσ/dM(HH) for each term: ZHH@1 TeV

$$\sigma = S\kappa_{\lambda}^{2} + Q\kappa_{q}^{2} + B\kappa_{b}^{2} + I_{SQ}\kappa_{\lambda}\kappa_{q} + I_{SB}\kappa_{\lambda}\kappa_{b} + I_{QB}\kappa_{q}\kappa_{b}$$

fitting κ_{λ} , κ_{q} , κ_{b}

$$\sigma = S\kappa_{\lambda}^{2} + Q\kappa_{q}^{2} + B\kappa_{b}^{2} + I_{SQ}\kappa_{\lambda}\kappa_{q} + I_{SB}\kappa_{\lambda}\kappa_{b} + I_{QB}\kappa_{q}\kappa_{b}$$

no contraint
$$\chi^2 = \sum_i^n (\frac{\sigma_i - \sigma_i'}{\Delta \sigma_i})^2 \quad \frac{\sigma: \text{ measured value}}{\Delta \sigma: \text{ measurement error}} \\ \sigma': \text{ predicted value}$$

3 observables are considered σ_{ZHH} @ 500 GeV

σzhh @ 1 TeV

 σ_{vvHH} @ 1 TeV

20.2%

 $\Delta \sigma / \sigma$

19.2%

15.2%

with constraints on κ_q , κ_b from other measurements

$$\chi^2 = \sum_{i}^{n} \left(\frac{\sigma_i - \sigma_i'}{\Delta \sigma_i}\right)^2 + \left(\frac{\kappa_q - \kappa_q'}{\delta \kappa_q}\right)^2 + \left(\frac{\kappa_b - \kappa_b'}{\delta \kappa_b}\right)^2$$

results: w/o constraint on κ_q (but κ_b fixed) (3 observables)

results: $\delta \kappa_q = 10\%$ (but κ_b fixed) (3 observables)

results: $\delta \kappa_{\lambda}$ versus $\delta \kappa_{q}$ (but κ_{b} fixed) (3 observables)

results: $\delta \kappa_{\lambda}$ versus $\delta \kappa_{q}$ (but κ_{b} fixed)

(1 observable: ZHH @ 500 GeV only)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_b$ (w/ $\delta \kappa_q = 1\%$) (3 observables)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_b$ (w/ $\delta \kappa_q$ = 1%) (1 observable: ZHH @ 500 GeV only)

my observation

in order to get similar precision for HHH as obtained assuming fixed both HVV and HHVV

when HVV is fixed

- 500 GeV only: HHVV < 10% (~5%) would be needed
- 500 GeV + 1 TeV: HHVV < 1% (~0.5%) would be needed

when HVV is fluctuated

- 500 GeV only: HVV ~ 10% would be needed
- 500 GeV + 1 TeV: HVV < 1% (~0.5%) would be needed

backup

results: $\delta \kappa_q = 10\%$ (but κ_b fixed)

(1 observables: ZHH @ 500 GeV only)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_b$ (w/ $\delta \kappa_q$ = 10%) (3 observables)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_b$ (w/ $\delta \kappa_q$ = 0.1%) (3 observables)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_b$ (w/ $\delta \kappa_q$ = 10%) (1 observables: ZHH @ 500 GeV only)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_b$ (w/ $\delta \kappa_q$ = 0.1%) (1 observables: ZHH @ 500 GeV only)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_q$ (w/ $\delta \kappa_b$ = 1%) (1 observables: ZHH @ 500 GeV only)

add in $\delta \kappa_b$: $\delta \kappa_\lambda$ versus $\delta \kappa_q$ (w/ $\delta \kappa_b$ = 10%) (1 observables: ZHH @ 500 GeV only)

