Calorimeter systems for linear collider experiments

Felix Sefkow

LINEAR COLLIDER COLLABORATION

ILC Meeting at DESY, July 8, 2016

Outline

- Absorber materials
- Active layer technologies
- Geometries and services
- Segmentation

LC physics with jets: M_{inv}

- W Z separation
 - study strong e.w. symmetry breaking at 1 TeV
- Other di-jet mass examples
 - $-H \rightarrow cc, Z \rightarrow vv$
 - Higgs recoil with $Z \rightarrow qq$
 - invisible Higgs
 - WW fusion → H → WW
 - total width and g_{Hww}
- SUSY example:
 - Chargino neutralino separation

Fragmentation effects dominate at low Eiet but largely cancel in Minv

Calorimeter optimisation

- Mostly driven by jet energy performance and particle flow
- Large radius, high magnetic field, calorimeters inside coil
- Dense and compact design
- Very high granularity
- ECAL also studies tau identification
- Less well or not at all studied
 - photon energy resolution
 - electron and muon identification

Absorber materials

- Electromagnetic showers: X₀
- Hadronic showers $\lambda_{\rm I}$ (and X_0)
- Photon photon separation R_M ~ X₀
- Photon hadron separation: λ_I / X_0
 - ECAL "transparent" for hadrons
- W preferred for ECAL

((cm) λ_1	X_0	λ_I / X_0
Fe	16,8	1,8	10
W	9,9	0,35	28
Pb	17,6	0.56	31

GLD had a Pb ECAL and a Pb HCAL option

Absorber materials

- Electromagnetic showers: X₀
- Hadronic showers λ_I (and X₀)
- Photon photon separation R_M ~ X₀
- Photon hadron separation: λ_I / X_0
 - ECAL "transparent" for hadrons
- W preferred for ECAL

(C	m) λ ι	X_0	λ_{l} / X_{0}
Fe	16,8	1,8	10
W	9,9	0,35	28
Pb	17,6	0.56	31

GLD had a Pb ECAL and a Pb HCAL option

HCAL absorber

- Want reasonable sampling for hadronic and electromagnetic part of shower: avoid too large $\lambda_{\rm I}$ / X_0
- Fe preferred for the HCAL
- CLICdp had considered W
 - to fit enough $\lambda_{\rm I}$ inside coil
 - performance gain at high E for same ΔR
- With new model back to Fe
 - more space due to smaller tracker
 - Performance superior for same number of $\lambda_i \sim 7.5$
 - W: 70 layers, $\Delta R = 1.2m$
 - Fe: 60 layers, $\Delta R = 1.6$ m

(c	m) λ _I	X_0	λ_1 / X_0
Fe	16,8	1,8	10
W	9,9	0,35	28
Pb	17,6	0.56	31

HCAL absorber

- Want reasonable sampling for hadronic **and** electromagnetic part of shower: avoid too large λ_I / X_0
- Fe preferred for the HCAL
- CLICdp had considered W
 - to fit enough $\lambda_{\rm I}$ inside coil
 - performance gain at high E for same ΔR
- With new model back to Fe
 - more space due to smaller tracker
 - Performance superior for same number of $\lambda_i \sim 7.5$
 - W: 70 layers, $\Delta R = 1.2m$
 - Fe: 60 layers, $\Delta R = 1.6$ m

(0	/111 <i>) </i>	/\ U	/\ / /\U
Fe Fe	16,8	1,8	10
W	9,9	0,35	28
Pb	17,6	0.56	31

(cm)

 λ_1 / Y_0

YΩ

Particle flow technologies

- Silicon (ECAL)
 - most compact solution, stable calibration
 - -0.5-1 cm² cell size
 - MAPS pixels also studied
- Scintillator SiPM (ECAL, HCAL)
 - robust and reliable, SiPMs..
 - ECAL strips: 0.5 1 cm eff.
 - HCAL tiles: 3x3 cm²
- Gaseous technologies
 - fine segmentation: 1 cm²
 - Glass RPCs: well known, safe
 - MPGDs: proportional, ratecapable
 - GEMs, Micromegas

Calorimeter Systems

Felix Sefkow 8. Juli 2016

Gas gap

Test beam prototypes

SiW ECAL

RPC DHCAL, Fe & W

ScintW ECAL

RPC SDHCAL, Fe

Scint AHCAL, Fe & W

- plus tests with small numbers of layers:
- ECAL, AHCAL with integrated electronics
- Micromegas and GEMs

Calorimeter Systems

Felix Sefkow

Choices

ILD CLICdp SiD **(/)** SiW Ecal **(/)** Sci W Ecal **(** Sci Fe Hcal **(')** Gas Fe Hcal **(/) (/**)

SiD HCAL baseline

- SiD recently changed their HCAL baseline from Gas to scintillator
- Internal review including external expertise
 - J. Brau, M. Breidenbach, R.Rusack
- In favour of scintillator: progress in SiPM
- Concerns with respect to RPCs
 - calibration not simple, no reference signal
 - no redundancy for monitoring (equiv. to LED)
 - but stability required since response varies with gain
 - large cell-to-cell cross-talk, non-uniformities
 - non-linear response
 - ageing
 - fragility
 - gas flow uniformity over large area, gas recovery system
- Not final, of course

Geometries

- Basic choices:
- Barrel endcap

long barrel, plugs

short barrel, end-caps

Basic layouts

Basic layouts

Figure 1: Longitudinal (YZ) cross section of the top right quadrant of CLICdet_2015 (left) and CLIC_SiD (right).

- give up non-pointing phi sectors
- tapered iron provides better magnetic field containment

ILD and SiD

HCAL module supports ECAL module

Note module overlap: No gaps; service cables at ends.

- give up non-pointing phi sectors
- tapered iron provides better magnetic field containment

Barrel-Door partitions

- give up non-pointing phi sectors
- tapered iron provides better magnetic field containment

ILD and SiD Felix Sefkow LC Forum, 9. October 2013

- give up non-pointing phi sectors
- tapered iron provides better magnetic field containment

ILD HCAL

- TESLA: coaxial, interfaces and services between barrel and endcap
- Videau: tangential, interfaces and services between HCAL and coil

This geometry would be good for the HCAL ring.

- tangential
- read-out interfaces and services between ECAL and HCAL

tangential

 read-out interfaces and services between ECAL and HCAL

- tangential
- read-out interfaces and services between ECAL and HCAL

End-Caps: 4 x 3 modules each

SID ECAL

- co-axial
- interfaces between barrel and endcap
- 1mm gap

Hexagon sensors arrangement

detector module between tungsten plates

Calorimeter Systems

Felix Sefkow 8. Juli 2016

CLICdp

no decision on calorimeter signal routing taken yet

ECAL optimisation

- (HCAL cell sizes, see back-up slides)
- X750 real or not, reminder that X→γγ is a discovery channel
- Stochastic term does matter also for heavy resonances

ECAL longit. segmentation

- Jets: sensitive mostly for low jet energies
- Photons: more direct impact

Profiles and resolution

Profiles and resolution

Profiles and resolution

Better performance with larger segmentation

ECAL leakage

Material between ECAL and HCAL: stay impact on jets and photons

Summary

- Consensus on absorber materials
- Technologies: some signs of slow convergence
- Basic calorimeter geometries still under discussion (everywhere)
- Photon energies back in focus
 - ECAL segmentation, ECAL HCAL combination

Back-up slides

Simulate smaller granularities

- Simulate with same degree of realism as in AHCAL test beam
 - except noise (not an issue with present SiMs)
 - and adjust threshold in order to obtain similar linearity
- Apply digital and (reoptimised) semi-digital reconstruction
- For 1x1cm² case, semi-digital (2-bit) information is sufficient
- With full analogue information, 1x1 not better than 3x3

Simulate smaller granularities

- Simulate with same degree of realism as in AHCAL test beam
 - except noise (not an issue with present SiMs)
 - and adjust threshold in order to obtain similar linearity
- Apply digital and (reoptimised) semi-digital reconstruction
- For 1x1cm² case, semi-digital (2-bit) information is sufficient
- With full analogue information, 1x1 not better than 3x3

Simulate smaller granularities

- Simulate with same degree of realism as in AHCAL test beam
 - except noise (not an issue with present SiMs)
 - and adjust threshold in order to obtain similar linearity
- Apply digital and (reoptimised) semi-digital reconstruction
- For 1x1cm² case, semi-digital (2-bit) information is sufficient
- With full analogue information, 1x1 not better than 3x3

- Jet energy resolution is the goal
- In principle can benefit in two-fold way:
 - improve resolution for neutral objects
 - improve cluster energy estimators for track-cluster association -

- Jet energy resolution is the goal
- In principle can benefit in two-fold way:
 - improve resolution for neutral objects
 - improve cluster energy estimators for track-cluster association -

studies with Pandora PFA

- Jet energy resolution is the goal
- In principle can benefit in two-fold way:
 - improve resolution for neutral objects
 - improve cluster energy estimators for track-cluster association -

studies with Pandora PFA

- Jet energy resolution is the goal
- In principle can benefit in two-fold way:
 - improve resolution for neutral objects
 - improve cluster energy estimators for track-cluster association -

Particle Flow Calorimetry

Granularity and resolution 2

Granularity and resolution 2

3 cm still a very reasonable choice

