HPR: water jet force measurement

Experimental set up: in the HPR system a load cell is installed. Distance between the cell and the nozzle is the same as the one for the equator of TTF cavity.

Water jet parameters during the test:

Orifice diameter: 0.55 mm
Throughput: from 0 to 1.7 1/min

Pump pressure: up to 120 bar

Force sensor: miniaturized load cell

Sensor: Honeywell FSG-15N1A

Sensor: Silicon piezoresistor Sensitivity (@10 V): 24 mV/N

Max load: 15 N

Overforce max: 55 N

Linearity: 0.5 % read.

Reproducibility: 0.2 % read.

Sensor deflection: < 30 µm

RS catalog: 235-6210

9,0

Reading system and calibration

EXCITATION SCHEMATIC

FS SERIES CIRCUIT

1. Circled numbers refer to sensor terminals (pins). Pin 1 is designated with a notch.

Pin 1 = Supply V_s (+)

Pin 2 = Output, (+)

Pin 3 = Ground, (-)

Pin 4 = Output, (-)

Reading System: Solartron digital multimeter, 6 $\frac{1}{2}$ digits

Paolo Michelato INFN Milano - LASA Hamburg March 31, 2005

Very preliminary data

Data are calculated as the water will loose all the energy in the impact and no energy was loss during the flight from the nozzle

$$F = 2 \cdot A_{N} \cdot (P_{pump} - P_{Atm})$$

Paolo Michelato INFN Milano - LASA Hamburg March 31, 2005

The force sensor in the HPR

What can be done in the future?

Do more reliable measurements, avoiding HPR head vibrations.

Measure of the force during system rotation: jet profiling is possible? (signal deconvolution?)

System can be easily transferred to other labs to make comparison of the water jet characteristics.

Pictures in the light and in the dark

