SMTF Plans & Progress

Peter Limon
March 31, 2005

Outline

- A Description of SMTF and Its Goals
- SMTF Plan
 - General Design Philosophy
 - Schedule Requirements
 - The SMTF Plan A
 - Major Risk
 - Conclusions

What Is SMTF?

- SMTF will be a national facility located at Fermilab for the fabrication & testing of superconducting modules.
 - This presentation addresses only the test facilities.
- SMTF supplies infrastructure including space, cryogenics, power and other utilities, controls, radiation shielding, etc., for complete highpower tests.

SMTF Goals

Guiding Principles

- SMTF will be inclusive of many different types of modules, β <1, β =1, and CW
- SMTF should not be the cause of delay in the initial testing program. Be ready when modules are available to test.

The tests are expected to include:

- Bare cavity tests
- High-power pulsed and CW RF tests of modules
- High-power pulsed and CW tests with beam

Schedule Requirements (PI & ILC)

Start in the Meson Lab

Available Cryogenics

- Equivalent of 60 W capability at 2 K with the addition of vacuum pumps.
- Additional capability at 4 K for shields

Available Space

- There is a potential for a long beam line.
- The building is at grade, so a lot of shielding is needed.
- The space is very tight to put the whole operation in Meson Lab.

Will Require a New Refrigerator in ~2009

- Looking at using all or part of old SSC refrigerator
- Need ~ 300 W @ 2 K + 300 W @ 4.5 K + 5 kW @ 40 K

Meson Lab

Meson Refrigerator

Meson East, September 2004

Meson East, February 2004

Meson Polarized, September 2004

Meson Polarized, February 2004

All of SMTF @ Meson Lab

SMTF Plan A

Distribute SMTF to More Locations

- Start module testing at Meson Lab
- Assemble the Proton Driver front end at Meson Lab
- Install the photo-injector (as it exists at A0) at Meson Lab and perform the first ILC module beam tests using dewar-supplied helium and a temporary recovery system in Lab B.

Meanwhile, build the new refrigerator at New Muon

- Also, build a tunnel extension at New Muon. (Remove CCM?)
- Leave the Proton Driver and Single-Module tests at Meson Lab
- Set up the CW tests at New Muon with an independent beam line and at the end of the photo-injector.

Under study -- Performing bare-cavity tests at MTF

Use existing excess space and 2K refrigeration

New Muon & Vicinity

New Muon Facing South

New Muon Facing North

SMTF Plan A @ New Muon

SMTF Plan A @ Meson Lab

SMTF Plan A

Advantages

- Great Space at New Muon
- The is a feasible plan for early operation at New Muon
- Expandable (> 1km to site boundary)
- New refrigerator will supply plenty of cryogenics
- Below grade, no radiation problems
- Relieves space and cryogenic requirements at Meson
- We retain early test capability at Meson Lab

Risks

Need to build a new refrigerator and building at New Muon

CONCLUSIONS

- We are on track for an early start of cryogenic and RF tests in the Meson Lab
- Plan A is feasible and satisfies all requirements
 - There is no delay in the startup of operations at New Muon Lab.
- The modifications to New Muon are slight
- The Risks are Understood
 - The major risk is possible inability to get a new refrigerator

