#### TESLA Technology Collaboration Meeting

DESY, 30 March - 1 April 2004



# European Overview of TESLA Technology Related Activities

Carlo Pagani

INFN Milano and DESY
On leave from University of Milano

## The TESLA Collaboration







## Develop SRF for the future TeV Linear Collider

#### TTF: TESLA Test Facility

- · Full Prototype of the TESLA Linac: for component and operation experience
- Infrastructure: for cavity development and module assembly

#### Basic goals

- Increase gradient by a factor of 5 (Physical limit for Nb at ~ 50 MV/m)
- · Reduce cost per MV by a factor 20 (New cryomodule concept and Industrialization)
- Make possible pulsed operation (Combine SRF and mechanical engineering)

# The TTF I Linac - 6 Year exp.



## TTF II - VUV FEL



800 MeV 400 MeV 120 MeV 4 MeV





#### **VUV FEL User Facility**

- · Linac Commissioning done
- · SASE FEL Commissioning
  - · High Gain done
  - Saturation coming soon





TESLA Tech. Coll. Meeting DESY, 30 March 2005

## TTF2/VUV-FEL Schedule to 2007

| Saturation in wavelength range 30-120 nm  | July 2005  |
|-------------------------------------------|------------|
| User operation (extended period)          |            |
| Operation with long bunch train           | Dec. 2005  |
| User operation (extended period)          |            |
| 3rd Harmonic RF system and ACC6 installed | Feb. 2006  |
| 1 GeV beam energy                         | April 2006 |
| Saturation 6 nm                           | June 2006  |
| User operation (extended period)          |            |
| Seeding Option installed                  | Dec. 2006  |
| Seeding demonstration                     | April 2007 |

# The TESLA Cavity

#### Major contributions from: CERN, Cornell, DESY, CEA-Saclay

• 9-cell, 1.3 GHz





#### TESLA cavity parameters

| R/Q                  | 1036 | Ω                      |
|----------------------|------|------------------------|
| $E_{peak}/E_{acc}$   | 2.0  |                        |
| $B_{peak}/E_{acc}$   | 4.26 | mT/(MV/m)              |
| Δf/ΔΙ                | 315  | kHz/mm                 |
| K <sub>Lorentz</sub> | ≈ -1 | Hz/(MV/m) <sup>2</sup> |





Eddy-current scanning system for niobium sheets

Cleanroom handling of niobium cavities

#### **Preparation Sequence**

- Niobium sheets (RRR=300) are scanned by eddy-currents to detect avoid foreign material inclusions like tantalum and iron
- Industrial production of full nine-cell cavities:
  - Deep-drawing of subunits (half-cells, etc. ) from niobium sheets
  - Chemical preparation for welding, cleanroom preparation
  - Electron-beam welding according to detailed specification
- $800~^{\circ}\text{C}$  high temperature heat treatment to stress anneal the Nb and to remove hydrogen from the Nb
- 1400  $^{\circ}$ C high temperature heat treatment with titanium getter layer to increase the thermal conductivity (RRR=500)
- Cleanroom handling:
  - Chemical etching to remove damage layer and titanium getter layer
  - High pressure water rinsing as final treatment to avoid particle contamination

### A dedicated new infrastructure at DESY

- Scanning niobium material for inclusion
- Clean closed loop chemistry (Buffer Chemical Polishing BCP)
- High Pressure Rinsing, HPR, and clean room drying
- Clean Room handling and assembling (Class 10 and 100)



# Learning curve with BCP

#### BCP = Buffered Chemical Polishing

3 cavity productions from 4 European industries: Accel, Cerca, Dornier, Zanon



5-cell





TESLA Tech. Coll. Meeting DESY, 30 March 2005

# Electro-Polishing & Baking for 35 MV/m

The AC 70 example

EP at the DESY plant

· Low Field Emission

800°C annealing

120°C, 24 h, Baking

high field Q drop cured

High Pressure Water Rinsing



#### Electro-Polishing (EP)

instead of

Buffered Chemical Polishing (BCP)

- · less local field enhancement
- · High Pressure Rinsing more effective
- · Field Emission onset at higher field

#### In Situ Baking

@ 120-140 ° C for 24-48 hours

- · to re-distribute oxygen at the surface
- · cures Q drop at high field

# Performing Cryomodules

## Three cryomodule generations to:

 improve simplicity and performances minimize costs "Finger Welded" Shields Reliable Alignment Strategy Sliding Fixtures @ 2 K

Required plug power for static losses < 5 kW/(12 m module)

# LLRF performance in TTF



#### Operation with Final State Machine





#### **Contributions to Energy Fluctuations**

- 1. Lorentz Force
- 2. Microphonics
- 3. Bunch-to Bunch Charge Fluctuations
- 4. Calibration error of the vector-sum
- 5. Phase noise from master oscillator
- 6. Non-linearity of field detector
- 7. Klystron Saturation
- 8. RF curvature (finite bunch length)
- 9. Wakefield and HOMs

#### **Microphonics**



#### **Lorentz Force Detuning**





Adaptive Feed Forward can handle nonlinear systems through

The calculation of a new feed forward table needs only a few seconds.

#### **Adaptive Feedforward**



TESLA Tech. Coll. Meeting **DESY, 30 March 2005** 

Carlo Pagani

# Power Coupler

- TTF III Coupler has a robust and reliable design.
- Extensively power tested with significant margin

 New Coupler Test Stand at LAL, Orsay

#### Pending Problems

- Long processing time: ~ 100 h
- High cost (cavity/2)
- Critical assembly procedure

Dedicated laboratory at LAL/Orsay

10 + 30 New Couplers in construction by industry

# SC Cavity Tuners

## The Saclay Tuner in TTF





## The INFN Blade-Tuner



Successfully operated with superstructures



TESLA Tech. Coll. Meeting DESY, 30 March 2005

# X-FEL coming soon

- 50%-60% funded by the German Government European consensus established
- Great opportunity for all TESLA Technology based Projects
  - Machine reliability according to SRL standards
  - Industrial mass production of cavities (~ 1000) and modules (> 120)



# Cry3 improved design in progress



# The Ciemat 2K Quadrupole





# Industrial Study

**Technical Specification** XFEL-Cryomodule Design&Assembly **Industrial Studies** DESY EV 010-04 Version 2.4 Bernd Petersen DESY -MKS- (technical coordinator) phone: +49 40 8998 3596

- Technology transfer from Research to Industry
- Review with industry of the cryomodule design and assembly to focus:
  - Cost drivers
  - Critical steps of the assembly procedure
- Suggestion based on industrial experience in term of:
  - Similar productions
  - Labor organization
  - · Quality control

# New QC in cavity production



# Cryomodule Test Stand @ DESY



# EU Funding: CARE-JRA1



JRA1-SRF 5M€ from EU

- Improved cavity fabrication
- Thin film cavity production
- Seamless cavity fabrication
- Surface preparation
- Materials analysis
- Power couplers
- Cavity tuners
- Low level RF control
- Cryostat integration test
- Beam diagnostics

# Coupler Laboratory at LAL-Orsay



Class 10 Clean Room



klystron / modulator



400 °C vacuum oven



Ultra-pure water production

TESLA Tech. Coll. Meeting DESY, 30 March 2005

DE L'ACCÉLÉRATEUR L I N É A I R E

# Coupler Development at LAL-Orsay

# TTF III



High Power Coupler Test Stand

#### Alternative Designs





Clean room assembly

# New Saclay Tuner for XFEL

## New design with piezos

- · CARE/JRA-SRF
- SOLEIL upgrades
- · larger rigidity



- Fabrication of 2 tuners since beginning of 2005
- · 12 NOLIAC piezos, 2 PHYTRON stepping motors ordered
- Coll. with IPN Orsay: CEA send NOLIAC piezos to IPN for characterization, and IPN send P.I. piezos for tests on tuners
- Coll. with INFN-Milano for measurement with stress sensors @ 2K

## New INFN Blade-Tuner



- Integration of piezos for Lorentz forces and microphonics completed.
- Final Drawing delivered for fabrication.
- Two prototype, including the modified helium tank, are expected by end of June 2005
- Cold tests results by fall 2005 (DESY, BESSY, Cornell?)



# CryHoLab at Saclay/Orsay







### ELBE at FZR



The ELBE beam line layout



The successful SRF Gun

The Forschungszentrum Rossendorf (FZR) is commissioning a superconducting Electron accelerator with high Brilliance and low Emittance (ELBE) and a maximum beam power of 40 kW.

Each accelerating module contains 2 TESLA cavities to accelerate a 1 mA electron beam to energies of 12 - 40 MeV.

Two undulators allow access to a wide range of wavelengths.



The 2 TESLA Cavity Cryomodule

# BESSY soft X-ray FEL



# BESSY soft X-ray FEL

- 18 Cryomodules 8 cavities per module - based on the TESLA Technology with minor modifications
- CW operation (IOT Amplifiers)
- SRF Gun with FZR, DESY & UK



Layout of the BESSY soft X-ray FEL

#### Schematic of the BESSY Linac





TESLA Tech. Coll. Meeting DESY, 30 March 2005

## HoBiCaT @ BESSY



Designed to test 2 fully equipped TESLA like cavities in CW

Cryogenics successfully commissioned

Cavity test in the coming months

Extensive test of a cavity equipped with the Blade-Tuner for microphonics handling is being considered.

# The 4GLS Project in UK



### About 4GLS

 2010 - 4GLS is a uniquely flexible source of ultra-high brightness continuous and pulsed radiation covering the IR to XUV parts of the spectrum.

•

- ERL (energy recovery linac) provides high brightness, short pulse radiation, which vastly surpasses that provided by conventional storage ring technology. It also allows tailored pulse characteristics, leading to a high level of experimental flexibility.
- FEL (free electron laser) technology provides the opportunity to exploit very short, ultra-high brightness pulses from IR-, VUV- and XUV-FELs.
- The use of locked laser photoinjectors and superconducting technology throughout confers high stability and allows the different parts of the facility to be brought together as a unified whole. In particular the sources can be used in combination, with the pulses from one source matched and synchronised with those from another.

## The Funded ERLP



- A prototype Energy recovery Linac (ERLP) got £11.5M funding in April 03 to establish a skills base capable of building 4GLS.
- One Rossendorf like module has been chosen to act as both booster and linac for the ERLP.
- The module consists of 2 TESLA cavities capable of operating at 15 MV/m

# CW SRF Gun Development

#### Conceptual design of the $3\frac{1}{2}$ cell SRF Gun for 4GLS





The ELBE SRF Gun

A 3  $\frac{1}{2}$  cell superconducting gun in collaboration with ELBE, Rossendorf, is under development as a vital part for 4GLS.

The aim is to produce a gun with high photon brightness, short pulse and high coherence.

The design is based on TESLA cavity design and technology.

CW operation is a requirement for 4GLS

# TESLA Technology for ADS

#### EU Program named PDS-XADS now moving to EuroTrans



# Concluding Remarks

- The interest for the TESLA Technology is wide and growing
- The TESLA Collaboration achievements with TTF were sufficient to convince ITRP to recommend cold for ILC
- Europe is doing a big effort to coordinate activities in different labs and for different projects
- That's fine, but still not enough
- Also in Europe the cold technology experts are not sufficient to develop all major projects in parallel