Module Evolution from TTF to ILC

Bernd.Petersen@desy.de

DESY –MKS
Lutz.Lilje@desy.de

DESY -MPY-

Overview

- Summarize the technical changes which are going to be implemented for the next cryomodules:
 - TTF III plus
- Summarize the design options needed to be implemented for the ILC
- Try to show how one can make a smooth transition without sacrificing too much of the synergy XFEL-ILC

XFEL and ILC modules

- Cryogenic layout fulfills specification
- Cross section likely to be the same
 - Standard diameter piping is desirable
- Cavity support system works o.k.
 - Cavity position will be kept nearly fixed with the help of an invar rod
 - Alignment is o.k., further tests desirable
- Technical improvements from TTF III modules for XFEL known today
 - Cavity HOMs modified
 - Mirrored HOM
 - Larger Pickup-port
 - Quadrupole package
 - supported like cavities (sliding fixtures)
 - 2K operation
 - Position of vacuum coupler pumpline changes
 - Modules suspended from the ceiling

XFEL and ILC modules II

- Technical issues that need work
 - Transport issue needs to be solved
 - O-ring sealings should be replaced
 - All metal gaskets on the cryostat
 - Welding instead of sealings
 - Tuners
 - Can be the same (if a compact design becomes available soon enough for the XFEL)
 - Piezo tuner needs engineering design
 - Vibration measurements
 - Underway, need more work
 - Coupler processing
 - Studies at LAL Orsay underway

XFEL ≠ ILC

- Cavity spacing
 - XFEL: N times lambda distances needed
 - Minor change on TTF cryostat
 - ILC: As compact as possible
 - Cavity design not fixed yet
 - Proposal:
 - » For the first iterations use existing cavity design and evolve cryostat design
 - » Other components (like the tuner) can be made fit already now even with a more spacious cryostat
- $-12 \text{ m} \neq 17 \text{ m}$
- Quadrupole position might be different

Module Length TTF-Type 3 and XFEL Modules

- Lamda: 230,6 mm
 - module length: n x lambda/2
 - n x module length within a few millimeters (linac installation!!)
- TTF type 3 12 200 mm, but 53 x lambda = 12 221,8 mm
 - → TTF type 3 is to short by 21,8 mm
- XFEL type Goal: Shorten module length by 230,6 mm
 - → depends on space needed for magnet, BPM and HOM-absorber (detailed design underway)

Differences for Magnet / BPM longitudinal movement

- Because:
 - XFEL magnet will be cooled at 2K (like the cavities)
 - XFEL magnet vessel will be made of Titanium
 - And most important:
 - XFEL magnet/BPM will be supported like cavities!!!
 - This means, longitudinal movement will be reduced drastically.
- Rough comparison for longitudinal movements at the end of the of beam line in direction module center:
 - TTF type 3 ~17 mm
 - XFEL type ~ 4 mm
- →Impact for beam line bellows...

Helium GRP/Posts

logitudinal movement posts during cool down module type TTF III

Helium GRP/Posts

longitudinal movement posts during cool down module type TTF III plus (XFEL)

-->sliding fixed ←sliding

HOM-Absorber

Between Modules

XFEL-Option

- New Cold mass design-Minor modification on coupler distance
- Correct lambda cavity-unit and module

 Available spacing for magnet, BPM and HOM absorber :

For 12221.8mm module length: 1153

– For 12221.8 minus lambda/2: 1038

For 12221.8 minus lamda: 923

Quadrupole, BPM, HOM absorber package

L [mm]	Known accuracy to date	Comments
160		Fixed
300	maximum	Design request.
150	10 mm	Needs confirmation for French BPM version
300	10 mm	
910		
	160 300 150	L [mm] to date 160 300 maximum 150 10 mm 300 10 mm

- Reminder: For 12221.8 minus lamda: 923mm

Alignment Modules in Linac Cavity/Magnet-Axes

- Verified new concept in module type 3:
 - Cavity position fixed with invar rods
 - z-position with x-ray at coupler ports/antenna
 - x/y-position with WPM-system
 - Continuous online measurements
 - But finally test with beam needed using HOMs (underway)

Cavity supports principle

- Four C-shaped stainless steel elements clamp a titanium pad welded to the helium tank.
 - Rolling needles reduce drastically the longitudinal <u>friction</u>
 - Cavities are independent from the elongation and contraction of the HeGRP.
 - Lateral and vertical position are defined by reference screws
 - Longitudinal position can be fixed by the use of an Invar rod

Cavity supports

Sliding Fixtures

Lutz Lilje DESY -MPY-

Cavity supports pictures

Lutz Lilje DESY -MPY-

WPMs M4, M5 at 2K

Tal	ble 1: Result	t Summary.	
TDR Specifica	tions (rms))	
Cavities	x/y	± 0.5 mm	
Quadrupoles	ж/у	± 0.3 mm	
WPM results ((peak)		
Cavities	x	+ 0.35/- 0.27 mm	
	У	+ 0.18/- 0.35 mm	
Quadrupoles	x	+ 0.2/- 0.1 mm	
	v	+ 0.35/- 0.1 mm	

by the WPM system.

Wire position monitors in Modules 4 and 5 2003

See readjustment 9-Aug-04 refered to beamline

Koppler 2K/300K

Quadrupole package

- XFEL magnet package
 - Super ferric design
 - Field simulations finished
 - Mechanical design started
 - About a factor of 2 shorter than TTF design
 - Steering coils
 - Fit in quad aperture
 - investigation for lower current solution (smaller power supplies)

Design of XFEL Magnets

Requirements

	Quadrupole	Inner dipole	Outer dipole
Strength	5.6 T	0.006 T·m	0.006 T·m
Current	50 A	50 A	50 A
Temperature	2 K	2 K	2 K
Aperture	112 mm	$100 \mathrm{mm}$	105 mm
Field quality	$ b_6 < 10$ units	-	-
Gradient/Field	35 T/m	0.04 T	0.04 T
Length	$200~\mathrm{mm}$	250 mm	250 mm
Operation	DC	DC	DC

Design of a superferric quadrupole-dipole package - p. 2/21

Vibration measurements

- Accelerometers
- Geophones / Seismic sensors
- Results
 - Experimental setups working
 - Cultural noise can be identified
 - Pumpstands for isolation vacuum identified as a noise source
 - Decoupling of mechanical vibrations tested and achieved
 - Amplitude on quadrupole 2-3 times higher than on the ground
 - Seismic sensors show larger amplitudes
- Experiments need to be continued on TTF
- Module test stand or TTF
 - Excite mechanical modes with an external vibration source

TESLA ILC and XFEL@DESY

Comparisation between the vertical vibration on the floor and on the module 4 and 2*.

Pump stand without/with modifications Horizontal Sensors (2 different days)

RMS average, midnight ± 1 hour

Sensors:

Cold Top Socket

Different days

- Mon "without"
- Tue "with"

Horizontal vibrations much larger

Cold Signal *3

Some reduction below 25 Hz

Large reduction between 25 and 50 Hz

High Power Coupler

- Reference design is TTF3
- Processing of couplers

– Test stand: 50-130 hours (pair)

– CHECHIA: 20-120 hours (single coupler + cavity)

Module: 41 days

together with TTF2 couplers

Never limited by a TTF3 coupler

- Improvement of the coupler handling
 - Storage under dry nitrogen as long as possible
 - More data needed (coupler test stand/ CHECHIA)
- Test on CHECHIA showed that processing after exposure to clean air for 24 hours increases processing time by roughly 20 %
 - Limited in the cold part which was not exposed to air
- Further testing (LAL Orsay, CHECHIA)
- Thermal switch to facilitate 'In-situ' bake of the coupler will be tested

TTF3 conditioning time on Chechia

- Superconducting niobium cavities need to be shielded from the earth magnetic shielding
- Flux frozen into the material during cooldown leads to increased surface losses ~3-5 nOhm/μT
- $For Q_0 > 10^{10}$:
 - Acceptable magnetic field: B< 2 μT
- Use a cryoperm layer

Magnetic Shielding

Lutz Lilje DESY -MPY-

Figure 4.31: The Cryoperm shield around the helium vessel.

Demagnetization

- Mu-metal shield (Cryoperm) needed
 - Less than 2 μ T at the cavity, $Q_0 > 10^{10}$
- Demagnetization of the cryostat vessel
 - Might be avoided
 - Test in CHECHIA with Helmholtz coils proposed to test efficiency of cryoperm shielding

Tuner consists of 2 parts

- Slow tuner
 - Allow for different thermal shrinkage
 - Correct slow drifts e.g. He pressure
 - Specification:
 - Range: 820 kHz
 - Resolution: 1 Hz /step
 - 2 basic types have been tested
 - Lateral (Saclay)
 - Coaxial (INFN, DESY)
- Fast tuner
 - Compensate Lorentz-forces
 - $df \le 1 kHz in 1 m$
 - Piezoelectric

Frequency Tuner

Lutz Lilje DESY -MPY-

Figure 4.21: How the CTS is acting on the cavity length.

Lateral Tuner (Saclay)

Lutz Lilje DESY -MPY-

- Used in TTF
 - Double lever system: ratio ~ 1/17
 - Stepping motor with Harmonic Drive gear box
 - Screw nut system
- Needs space between cavities
- Interferes with HOM couplers
- More compact design seems feasible

Coaxial Tuner (INFN, DESY)

- On the He vessel
- Tested on the superstructure in TTF (4 units)
- Magnetic shielding more difficult
- 2nd design exists
 - Test in CHECHIA done

	Standard	New Tuner
Tuning range [mm]	1.9	1
Tuning range [kHz]	820	440
Sensitivity [Hz/step]	0.74	0.38

Active Tuner

- Actively compensate the detuning of the cavity during the RF pulse by mechanical means to reduce power consumption
- Piezoelectric elements are suitable for this application (heavily used for fuel injection in car industry)
- Proof-of-principle done
- A lot of engineering needed
 - Choice of tuner
 - Choice of Actuator

– ...

Drawing of Piezoelectric Elements in the Tuning Mechanism

Safety issues, AfA/TÜV

- First meeting with AfA (Amt für Arbeitsschutz)
 - 2-July-04
 - Druckbehälterklassifizierung der XFEL-Cryomodule
 - No problems expected
 - But:
 - Niobium is not a qualified material for cold temperature (mechanical properties)
 - This can be mitigated by arguing that the Ti-Vessel and the Cryostat are the safety containers
- First meeting with TÜV-Nord
 - 27-Sep-04
 - Introduction for the TÜV to propose a procedure for approval for
 - CrNi-welding 2K
 - Ti-Vessel weldings
 - ...

Modules

- Improved material specifications are available
- Improved procedures including specification/ work plan for
 - Preparation components
 - Module assembly
 - Linac module installation
- Complete drawings for modules type 3 expected Dec-04

Industrial Studies on Module Assembly

- Prepare a study by industry on the cryomodule assembly
 - Involve industry early
 - Profit of industrial experience
- Results of the study will be published
- Specification of XFEL-Cryomodule
 Design&Assembly for Industrial Studies

Cavity Spacing

- The cavity spacing for ILC and XFEL is probably different
 - XFEL will have minor changes e.g. coupler ports will move a few mm
 - ILC wants to increase fill factor
 - No ILC structure has been built
 - Shortened nine-cell is considered to be straightforward and should be done
 - 2x7 Superstructures as prototype
 - Other cell shapes
- Many of the components and procedures can be made compatible with ILC, and still be tested in TTF III plus cryomodules
 - Tuners
 - Lateral
 - Coaxial
 - Couplers
 - Assembly procedures including cavity assembly
 - Quadrupole position

Summary

- General cryostat layout o.k.
- Minor changes evolve from TTF-III towards first XFEL prototypes (TTF III plus)
- There are still technical issues that need to be resolved
 - Transport, O-ring vs. metal gaskets, vibrations etc.
- Most of the ILC compatible components can be tested in the TTF III plus cryostats
- Reduction of cavity spacing should run in parallel to cryostat evolution allowing to implement improvements on the cryostat now

Backup

Next:

- Next Meeting
 - Piezo tuner
- Action items
 - Fix module length
 - Tests on coupler baking
 - Test cryoperm shielding with Helmholtz coil
 - Safeguarding module transportation

XFEL-Module length options

MOD-006

3. Comment to the module length (RL)

Figure 1: Layout of the XFEL end section (Talk by KiZ).

The second secon

Modul Typ3 (M4,M5) Laengenangaben(Kalte Pos, Abstaende):

			230mm	230.6mm
Vak-Behaelter	Modul1_Anfang → Modul2_Anfang	12 200 mm	53.04	52.91
Cavity_gesamt	FlanschC1_Anfang →FlanschC2_Anfang	1 380 mm	6.00	5.98
Cavity Zellen	lris-Zelle1_Anfang → Iris-Zelle9_Ende	1 035 mm	4.50	4.49
Cavity Space	C1-Iris-Zelle8_Ende→ C2-Iris-Zelle1_Anfan	g 345 mm	1.50	1.50
Cavity_String	FlanschC1_Anfang →FlanschC8_Ende	11 040 mm	48.00	47.88
Cavity String Zel	IrisC1-Zelle1_Anf → IrisC8-Zelle9_Ende	10 695 mm	46.50	46.38
Modul1/Modul2	M1_C8-Zelle8_End →M2_C1_Zelle1_Anf	1 505 mm	6.54	6.53

[•] Für lambda 230mm

14-Okt-04 Jensch/Lange-MKS-

⁻ das Modul ist 10mm zu lang, aber Korrektur über Länge der Schiebemuffe moeglich.

[•]Nachtrag:lambda =230.6mm

⁻ Modul ist 21.8mm zu kurz , aber Korrektur über Länge der Schiebemuffe moeglich.

Meeting Minutes available under EDMS and WWW

- EDMS folder: 24054
- http://xfel.desy.de/content/e158/e442/e446/e822

Presentations to date

- Demagnetisation
- Vibration measurements
- Vacuum issues
- High power coupler
- Magnet package
- Alignment Modules in Linac: Cavity/Magnet-Axes
- Safty issues, AfA/TÜV

Vacuum issues

- Position of the BPM
 - Flanged connection to magnet (different from TTF)
 - Mechanical precision of the connection under investigation
 - Downstream of the magnet is the preferred position
- 'In-Situ' bake for couplers (see below)
- Position of the pumpline for the high power couplers needs change
- Replace o-ring seals with metal gaskets
 - at least for the cryostat vessel interconnection
- Overall length of the module needs to be determined
 - Will be close to existing length, if not shorter

Beam Vacuum

- Industrial study
 - fix position of BPM
- XFEL module
 - fix interface BPM/quadrupole
 - fix length of BPM
 - fix length of quadrupole

- fix total length of cavity string
- fix total length of intermediate piece

When do we need final length?

felicoflex flange