

Vibration Measurements at TTF

(Sep. 04)

TESLA Meeting, Hamburg March 31, 2005

H. Brueck

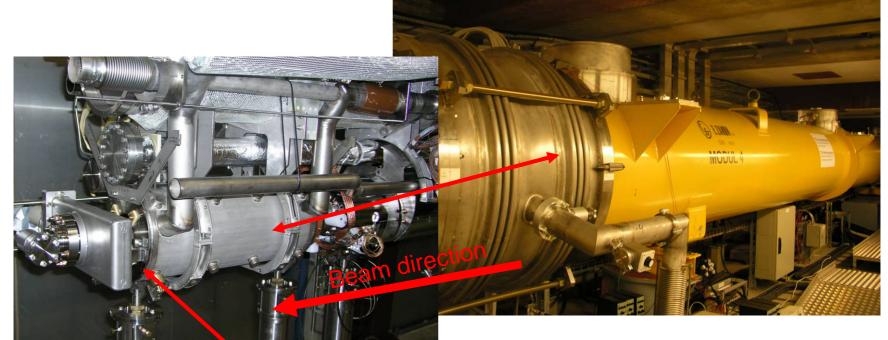
Heiner.brueck@desy.de

Status from Vibration Measurements during Shutdown (Sep 2004)

- Measurements at ACC 4 only
 - Data acquisition close to sensors
 - Two sensors (cold) at the quadrupole vertical and transverse to the beam
 - □ Two sensors on top of the module
 - Two sensors on the ground/support
 - One geophone (vertical) at various places
- Measurements with various conditions
 - Comparison Piezo Geophone
 - Day, night weekend
 - Vacuum pumps on, off, pumps dismounted from trailer

Quadrupole at the End of the Cavity

String in a Module



Piezo sensors

Module 4 at ACC4 of TTF

Measurement Conditions

- PC now close to sensors
- Preamplifier switched from acceleration to velocity
 - Implies a high pass at 1 Hz (.2 Hz in acc mode)
 - □ Low pass filter at 1 kHz
- Data analysis
 - Just FFT, ignoring non periodic effects, no corrections, no windowfunctions
 - Averaging over many measurements

Some Formulas

$$\ddot{x}(t) = P \cdot u(t)$$

Piezo Sensor acceleration

$$P = 10^4 \cdot \frac{\mu m}{V}$$

$$\dot{x}(t) = G \cdot u(t)$$

Geophone velocity

$$P=10\cdot rac{\mu m}{V}$$
 gain switch=1 of V

Fourier Transformations

Windows (Hanning window) tested but not used

Fourier Integral

$$F(\omega) = \frac{1}{T} \int_0^T u(t) \cdot e^{-i\omega \cdot t} dt$$

Power Spectrum

$$P(\omega) = \frac{2}{T} \left| \int_0^T u(t) \cdot e^{-i \cdot \omega \cdot t} dt \right|^2$$

Fourier Transformation

$$U_{j} = \frac{1}{N} \sum_{k} u_{k} \cdot e^{-i \cdot \omega_{j} \cdot t_{k}} = \frac{1}{N} \sum_{k} u_{k} \cdot e^{-i \cdot \frac{2\pi}{N} \cdot j \cdot k}$$

$$k = 0, 1 \dots N - 1 \qquad j = 0, 1 \dots \frac{N}{2} - 1 \qquad u_{k} \in \mathbb{R}$$

With this definition U_i is only .5 of the real Amplitude

$$P_{j} = 2 \cdot T \cdot \left| U_{j} \right|^{2}$$
 depends on T!

From Acceleration to Position

by double time integration which corresponds to by division by ω^2 of the Fourier coefficients

$$A_j o rac{U_j}{\omega^2}$$
 $P_j o rac{P_j}{\omega^2}$

Variance and RMS

$$RMS = \sqrt{\sigma^2}$$

$$\sigma^2 = \frac{1}{T} \int_0^T u(t)^2 \cdot dt \qquad \text{wit}$$

with zero average

$$\sigma^2 = \frac{1}{2\pi} \int_0^\infty P(\omega) \cdot d\omega$$

$$\sigma^{2} = \frac{1}{2\pi} \int_{0}^{\infty} P(\omega) \cdot d\omega \qquad \qquad \sigma^{2} = \frac{d\omega}{2\pi} \sum_{j} 2 \cdot T \cdot \left| U_{j} \right|^{2} = \frac{1}{T} \sum_{j} P_{j} = 2 \sum_{j} \left| U_{j} \right|^{2}$$

Often one plots the RMS values as function of a lower frequency limit (ω_0)

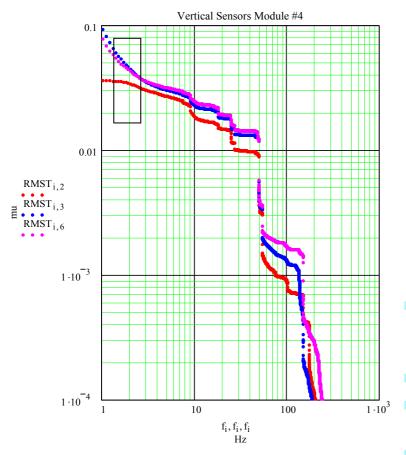
$$\sigma^{2}(\omega_{0}) = \frac{1}{2\pi} \int_{\omega_{0}}^{\infty} P(\omega) \cdot d\omega$$

$$\sigma_{j}^{2} = \frac{1}{T} \sum_{l=j}^{\frac{N}{2}-1} P_{l} = 2 \sum_{l=j}^{\frac{N}{2}-1} |U_{l}|^{2}$$

$$RMS = \sqrt{\sigma^2}$$

2 Piezos and a Geophone on the Socket

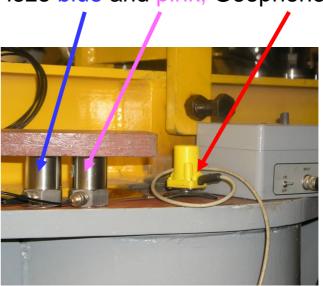
RMS average, Saturday midnight ± 1 hour



210804 2300 220804 0100

March 31, 2005

Piezo blue and pink, Geophone red



Good agreement between

- the two piezos
- piezo and geophone (20%)

Low RMS: 34 43 45 nm for f>2Hz

Comparable with ground motions measured by Ehrlichmann

 At low frequencies the noise signal is probably getting dominant

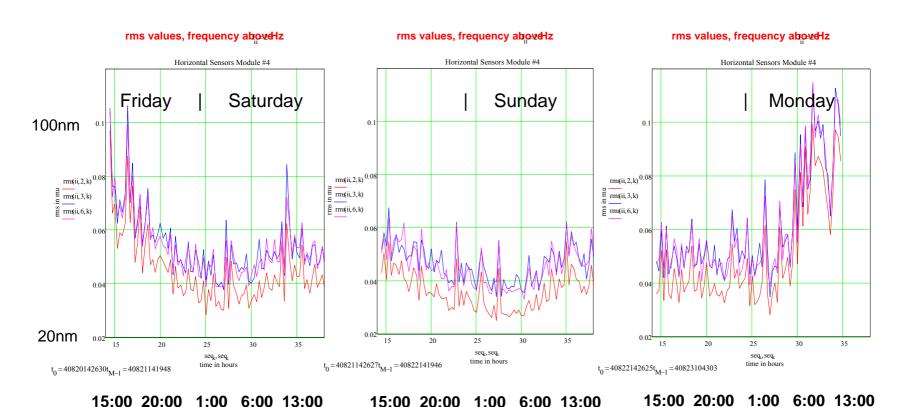
8

H. Brueck, DESY

Ground Vibration Time Dependence

Friday to Monday, RMS f>2Hz

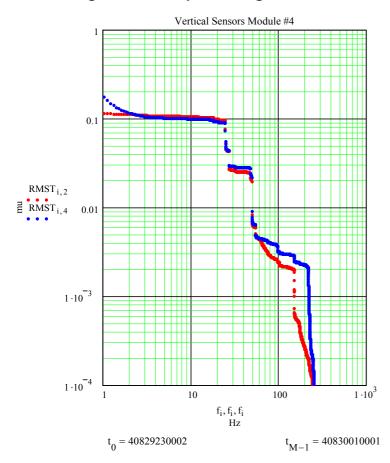
cultural noise



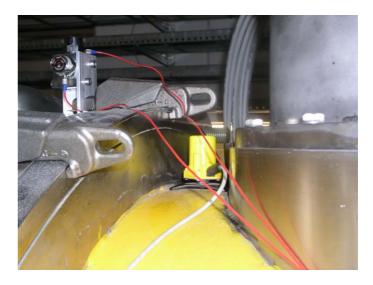
2 Piezos and a Geophone on the socket

Comparison of Piezo and a Geophone on Top of the Module (vertical)

RMS average, satuday midnight ± 1 hour

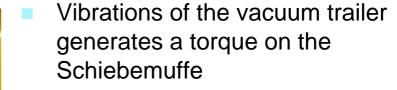


- Sensor positions on top of the module
- Good agreement, also Geophone and Piezo positions are not identical
- RMS: 115 nm for f>2Hz
- 2-3 time larger as at lower position (different weekend)



10

Check influence of the Pump Stand



Long lever arm

Vertical bellow fixed by bolts

Pump Stand Modifications

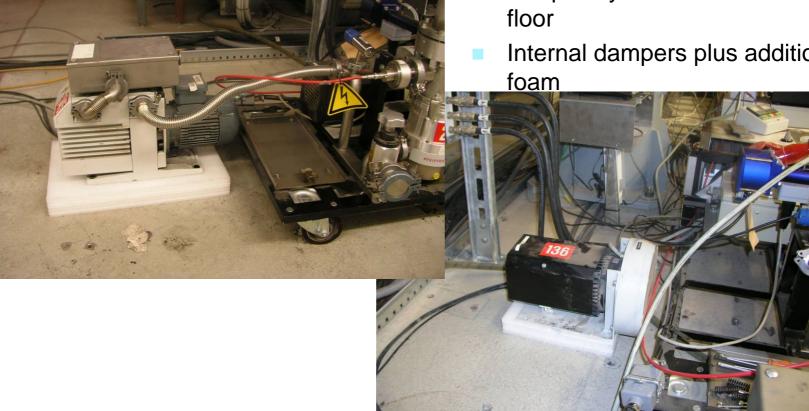
Pump moved from trailer to floor

Connected via a thin flexible line

Frequency converter moved to the floor

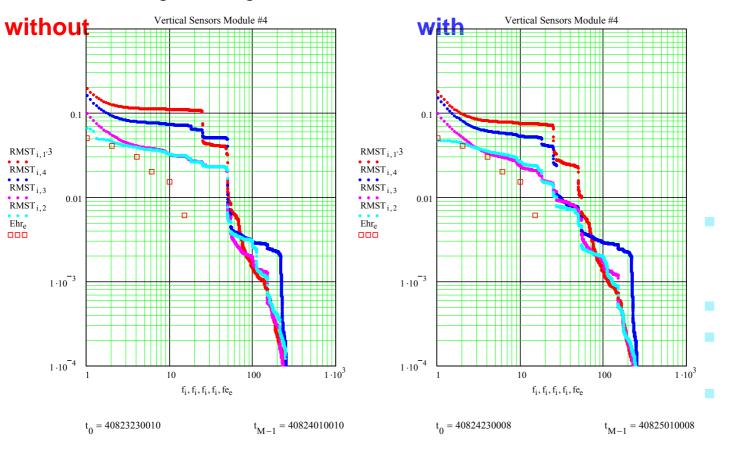
Internal dampers plus additional

12



Pump Stand without/with Modifications Vertical Sensors (2 different days)

RMS average, midnight ± 1 hour



Sensors:

Cold Top Socket Geophone Socket

Different days

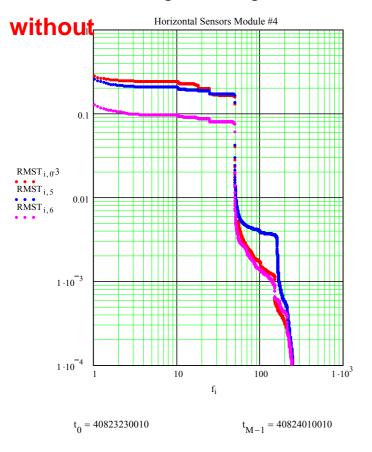
- Mon "without"
- Tue "with"

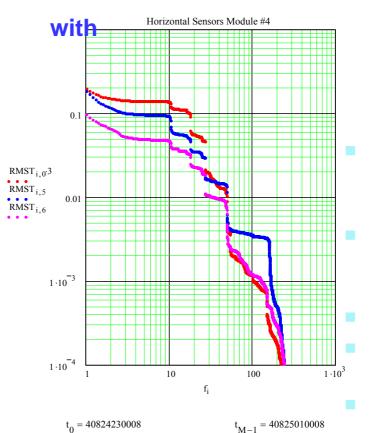
Cold Signal *3
Some reduction
below 25 Hz

Large reduction between 25 and 50 Hz

Pump Stand without/with Modifications Horizontal Sensors (2 different days)

RMS average, midnight ± 1 hour





Sensors:

Cold Top Socket

Different days

- Mon "without"
- Tue "with"

Horizontal vibrations much larger

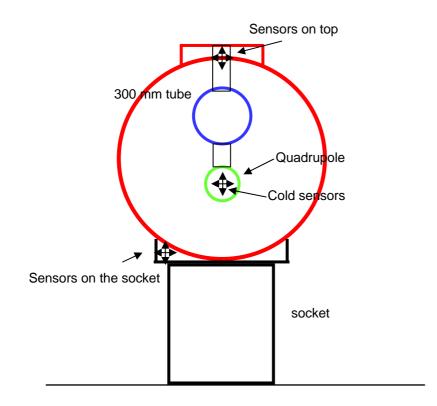
Cold Signal *3

Some reduction below 25 Hz

Large reduction between 25 and 50 Hz

14

Schematic View



- The horizontal vibrations are larger (about factor 1.5)
- Cold mass essentially hanging
- Horizontal movements less constraint

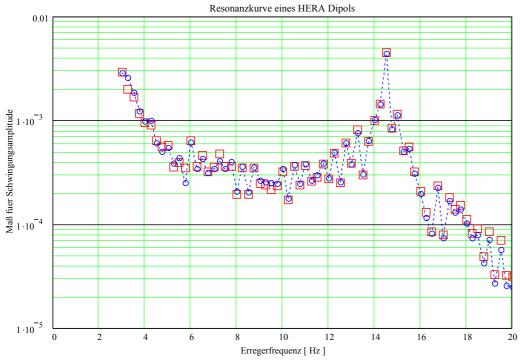
Present Summary

- Good agreement between the Geophone (our reference) and the Piezo in the frequency range from 2 to 100 Hz
 - at various positions
 - for averaged RMS and RMS vs. time
 - Cultural noise day/night/weekend
 - All in all data reliable
- Influence of vacuum pumps clearly seen
 - Effect vanishes after modifications
 - Pumps on/off not different anymore, which means turbo pump has no effect
- Next step
 - Analysis of data taken from forced vibrations using a motor with eccentric mass and tunable frequency
 - Analysis of data of pump stands optimizations

Forced Vibrations of a HERA Dipole

Cryostat up to 20Hz

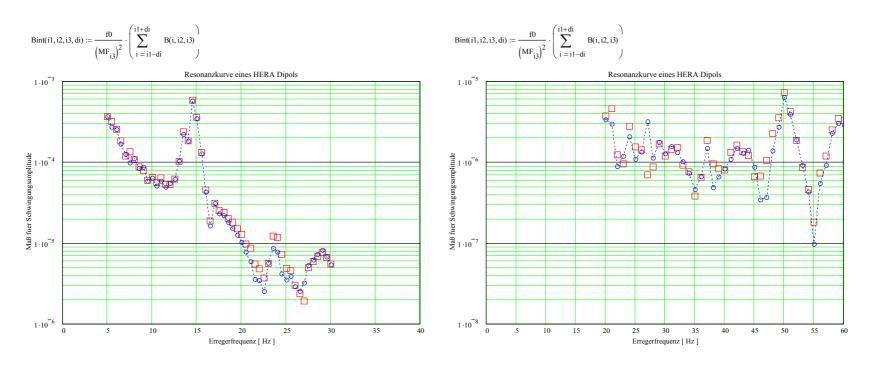
$$Bint(i1, i2, i3, di) := \frac{f0}{\left(MF_{i3}\right)^2} \cdot \left(\sum_{i = i1 - di}^{i1 + di} B(i, i2, i3)\right)$$



Strong resonance observed at about 14.5 Hz

17

Forced Vibration of a HERA Dipole Cryostat up to 60Hz



Different measurements with decreasing eccenter mass

Forced Vibrations of a HERA Dipole Cryostat, RMS and Spectrum

