Particle Flow Issues

Alexei Raspereza, DESY Hcal Main Meeting, 28/04/2005

Particle Flow Concept

- → P-flow concept : attempt to reconstruct every single particle in event
 → best possible jet resolution
- ➤ Exploits superiority of tracker w.r.t. calorimeters in measuring charged particles
- → Tracker information → 4P vectors of charged objects
- ◆ Ecal → 4P vectors of photons
- ➤ Ecal + HCal → 4P vectors of neutral hadrons
- → Efficient separation of neutral and charged objects is an issue → highly granulated calorimeters are required

Perfect Particle Flow. Simple Considerations.

Theoretical computation :

$$\sigma^{2}(E_{j}) = \sigma^{2}(charg.) + \sigma^{2}(\gamma) + \sigma^{2}(h^{0})$$
$$+ \sigma^{2}(conf.)$$

- TPC momentum resolution is much superior w.r.t. energy and angular resolution of calorimeters $\rightarrow \sigma^2$ (charg.) is negligible
- Perfect Pflow $\rightarrow \sigma(\text{conf.}) = 0$ $\sigma^{2}(E_{j}) = f_{\gamma} \times (0.11)^{2} E_{j} + f_{h0} \times (0.35)^{2} E_{j}$ Typically $f_{\gamma} = 0.25$, $f_{h0} = 0.15 \rightarrow \sigma^{2}(E_{j}) = (0.14)^{2} E_{j}$

Open Questions

- Ways of defining jet energy resolution :
 - w.r.t. to sum of true energies of all particles assigned to given jet (reflects solely detector resolution effects)
 - w.r.t to energy of primary parton (quantifies combined effect : detector resolution ⊕ fragmentation, imperfection of jet clustering
- ◆ Benchmark resolution of dE_{jet}/E_{jet} = 14%/√E_{jet} corresponds to the first definition
- How is it reflected on the Z/W/H mass resolutions?
- Theoretical computations are done by fixing f_{γ} and f_{h0} to some averaged values. But what is the effect of f_{γ} and f_{h0} fluctuations on dE_{iet}/E_{iet} ?

Toy MC Analysis

- Consider benchmark reactions:
 - $Z\rightarrow$ qq @ 91.2 GeV; HZ,WW,vvZZ \rightarrow 4jets @ higher energies
- Smear 4P momenta of each stable (measurable) particle in event according to its type and anticipated detector resolutions:
 - char. particles : $\delta p/p = 7.10^{-5}p$, $\delta(\Theta, \phi) \sim 1 \text{mrad}$
 - photons : $\delta E/E = 11\%/\sqrt{E}$, $\delta(\Theta, \phi) \sim 3 \text{mrad}$
 - h^0 : $\delta E/E = 30\%/\sqrt{E}$, $\delta(\Theta, \phi) \sim 5 \text{mrad}$
- Jet clustering with smeared objects => reconstruct jet energies
- Consider two possible definitions of jet energy resolution
 - $\delta E_j = E_{j, reconstr-smeared} E_{parton}$
 - $\delta E_j = E_{j, reconstr-smeared} E_{j, gen}$
- ⇒ Resolution expected for perfect Pflow

Hadronic Z Decays @ 91.2 GeV

- Studies done by Predrag for hadronic Z decays at 91.2 GeV
- ◆ ISR, beamstrahlung are off ⇒ perfect MC probe of pure detector effects on jet/mass resolution

$$EM = 11\%, HAD = 30\%$$

EM = 20%, HAD = 60%

Z Mass Resolution

Jet energy resolution directly translates in mass resolution But simple topology: two jets in opposite hemispheres => No big effect from fragmentation / jet clustering is expected

- Further studies with HZ,WW,vvZZ,vvWW samples are foreseen
- Studies with full detector simulation (Mokka) assuming perfect hit->cluster assignment and cluster->track linking are also planned

Realistic PFlow

- SNARK the only complete and self-consistent Pflow implementation available nowadays on the market
- Includes:
 - Realistic tracking (based on algorithms used in LEP experiments)
 - Clustering of calorimeter hits
 - Cluster track linking
 - Neutral vertex / kink finding & particle propagation
- Advantages
 - Fast, robust, efficient
- Disadvantages
 - No LCIO compliance
 - Heavily optimized for TDR geometry with HCAL tile size ranging from 5x5 to 25x25 cm² => reduced flexibility, no real use of imaging capabilities of HCAL

Performance of SNARK

 Tracking also influences jet energy resolution via efficient identification of V0 and kins

Z -> hadrons @ 91.2 GeV

Mass resolution with BRAHMS:

 $dM_z / M_z = 38\% / \sqrt{M}$

What We Need

- Complete / self-consistent reconstruction software designed in a modular object-oriented manner (MARLIN ideal framework for that) \rightarrow easy to maintain continuous development
- ◆ Worldwide study enters the phase of detector optimization where Pflow performance will be one of the criterion → software must be flexible (minimal dependence on detector configuration) in order to be used for detector optimization

What We Have

- ◆ A bunch of ideas inherited from SNARK (author : V.Morgunov)
- Logically disconnected pieces of code written independently by different people
 - Several separate clustering algorithms disentangled from tracking (MST Clustering by G.Mavromanolakis, layer-by-layer clustering by C. Ainsley)
 - Clustering algorithms using tracking information (track-wise clustering by A.Raspereza, Snark++ by V. Morgunov)
 - Are these algorithm are incompatible/exclusive w.r.t to each other or can they be used in a complementary way?
 - Tracking implemented within MARLIN (Steve Aplin) (FORTRAN wrapper)

Clustering Algorithms. Features.

- Challenge: highly granulated calorimeters -> huge number of hits -> need in preclustering. Usually based on analysis of some generic metric (3D distance, angle between) defined by hit pairs. Time consumed by this procedure ~ n(n-1), n = number of hits in an event
- Three out of four methods (MST, layer-by-layer cluster propagation, track-wise clustering) primarily exploit geometrical information, minimal use of hit amplitude information => appropriate for both analogue and digital device
- Snark++ uses amplitude information for making subcluster hypotheses (e.g. MIP or EM cluster), primarily intended to be used for analogue device
- MST, layer-by-layer cluster propagation: currently no use of tracking information; at certain point track-cluster links must be established
- ◆ Track-wise clustering, Snark++: use tracking information already at the stage of clustering, track intersection with calorimeter inner boundary -> cluster seed -> natural linkage between track and cluster.

5 GeV two-particle quality vs separation

- Goal: to distinguish charged clusters from neutral clusters in calorimeters e.g. π⁺γ / π⁺n.
- Propose a figure of merit:
 Quality = fraction of event
 energy that maps in a 1:1 ratio
 between reconstructed and true
 clusters.
- Quality improves with separation (naturally).
- ∀ π⁺γ separation at 5 GeV seems to be pretty good; π⁺n is somewhat tougher (n showers typically have relatively ill-defined shapes).

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

General CALICE meeting 14-16 March 2005, NIU, De Kalb, IL, USA

Clustering algorithms have comparable performance in terms of their capability to separate two close-by showers, but were not really examined on real multi-jet events as a part of Pflow algorithm.

22

Our Short-Term Goal.

- Check / improve existing clustering methods; try to gain maximal profit from ideas implemented in these methods
- Combine existing clustering methods with tracking procedure into Pflow algorithm
- Either find a way to use different clustering algorithms in a complementary manner or choose the one which provides the best Pflow performance in combination with tracking.
 Criteria for selecting clustering algorithm
 - Pflow efficiency in terms of jet energy / mass resolutions
 - Flexibility (minimal dependence on detector geometry)
 - Speed
- Complete self-consistent flexible Pflow algorithm is urgently needed for detector optimization studies

Ultimate Goal. Roadmap.

