Measuring the CP state of tau pairs from Higgs decay at ILC in ILD

June 2016：first update

15 July 2016：Further update

updates after ECFA－LC workshop＠Santander

Daniel Jeans

東京大学
the University of Tokyo

CP-violating coupling of Higgs to fermions possible at tree level
$\mathcal{L} \sim g \bar{f}\left(\cos \psi_{\text {CP }}+i y^{5} \sin \psi_{\text {CP }}\right) f H$
CP conserving coupling: $\Psi_{\mathrm{CP}}=0$ maximally violating $\Psi_{C P}=\pi / 2$
consider projection of spin on some axis: \uparrow, \downarrow
spin state of pair of spin $1 / 2$ particles
produced by spin-0 parent: ~ (|ヶ|>+e $\left.{ }^{2 i \psi}|\downarrow \uparrow\rangle\right)$
$\psi_{\mathrm{CP}}=0 \quad$: CP even eigenstate
$\Psi_{\mathrm{CP}}=\pi / 2 \quad$: CP odd eigenstate otherwise a mixture
decays of Higgs to tau pairs allows this to be probed
H decay to taus has significant BR
tau spin s can be partially reconstructed from decay product distribution

$$
\Gamma(\tau \rightarrow X) \sim(1+a h(X) \cdot s)
$$

$h(X)$ is the polarimeter vector
most likely tau spin direction for a given configuration X of its decay products
easy to calculate for $\begin{aligned} & \tau^{ \pm} \rightarrow \pi^{ \pm} v \\ & \pi^{ \pm} \pi^{0} \nu(\sim 11 \%) \\ &(\sim 26 \%)\end{aligned}$
CP effects best seen in correlation of spin components transverse to tau momentum:
$\Gamma\left(\mathrm{CP}\right.$ even/odd $\left.\rightarrow \mathrm{f}^{+} \mathrm{f}^{-}\right) \sim 1-\mathrm{s}_{\mathrm{z}}^{+} \mathrm{s}_{\mathrm{Z}}^{-}+/-\mathrm{s}^{+}{ }_{\perp} \mathrm{s}_{\perp}$

July update

h+ (polarimeter)

h- (polarimeter)

$d N /\left(d \cos \theta^{+} d \cos \theta^{-} d \phi^{+} d \phi^{-}\right) \propto 1+\cos \theta^{+} \cos \theta^{-}-\sin \theta^{+} \sin \theta^{-} \cos \left(\Delta \phi-2 \psi_{\mathrm{CP}}\right)$.
θ, φ are direction of polarimeter wrt tau- momentum in tau rest frames $\Delta \varphi=\varphi^{+}-\varphi^{-} ; \Psi_{\mathrm{CP}}$ is the CP mixing angle we want to measure
$\Delta \varphi$ distribution sensitive to ψ_{CP}
events with large ($\sin \theta^{+} \sin \theta^{-}$) are more strongly affected by $\psi_{C P}$ until now I have integrated over $\sin \theta^{+} \sin \theta^{-}$

July update

colours = different ranges of $\sin \theta^{+} \sin \theta^{-}$

mcphi4

one polarimeter along tau direction
both polarimeters perpendicular to tau direction
we want to measure phase of this modulation

July update

split simulated \& reconstructed MC data into 5 bins of $\sin \theta^{+} \sin \theta^{-}$
in each bin:
estimate size of modulation and number of signal \& background events
use this to make templates for toy MC experiments.
for each toy experiment, perform simultaneous likelihood fit to data in 5 bins and 3 channels ($Z->e e, ~ m m, q q$) to extract single value of $\Psi_{\text {CP }}$
(simultaneous fit is better behaved:
otherwise rather small number of events per experiment, and somewhat non-gaussian errors)
also:
a few small tweaks to selection cuts now include also rather small contribution to H 20 luminosity from $(-0.8,-0.3)$ and $(+0.8,+0.3)$ polarisations @ 250 GeV

Summary (July update)

split data according to how perpendicular the polarimeters are to the tau momentum

H20 precision on $\Psi_{\text {CP }}$ improves: $90 \rightarrow 70$ mrad
rather than binning data, a true 2d approach should improve result further
\rightarrow now studying
paper writing is progressing reasonably well

old slides

Full simulation \& reconstruction

Whizard 2.2.8, CIRCE2 beam-strahlung, ISR

$$
\begin{aligned}
& \mathrm{e}+\mathrm{e}-\rightarrow \mathrm{f}+\mathrm{f}-\mathrm{\tau}+\mathrm{t}-\quad \text { (} \mathrm{\tau}+\mathrm{t}-\text { from } 125 \mathrm{GeV} \text { Higgs) } \\
& \mathrm{e}+\mathrm{e}-\rightarrow \mathrm{f}+\mathrm{f}-\mathrm{\tau}+\mathrm{t}-\quad(\mathrm{t}+\mathrm{t}-\mathrm{not} \text { from Higgs) } \\
& \mathrm{f}=\mathrm{e}, \mu, \text { (uds) } \quad \text { (some generator level cuts, particularly for e+e-t+t-) }
\end{aligned}
$$

Pythia v8.212 for hadronisation \& FSR

1. signal decays: $\tau^{ \pm} \rightarrow \pi^{ \pm} v$ and/or $\tau^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} v$ "rho / ρ "
2. all $\tau^{ \pm}$decays
include spin correlations $\left(H_{S M}, H_{C P}\left(\Psi_{C P}=\pi / 4\right)\right.$, non-H)
Mokka simulation: ILD model ILD_o1_v05
standard Marlin/ILDConfig reconstruction [ilcsoft v01-17-09] background overlay standard Pandora steering (with recent photon reco)

UPDATE

found various FSR-related problems:
I had added FSR to electron and quark channels, but not to muon channel

I had not applied FSR correctly:
when tau radiates FSR,
tauola did not realise it comes from Higgs \rightarrow does not apply spin correlations in tau decay
now perform tau decays within pythia v8.212 instead of Tauola, "at same time" as doing FSR.
(tau spin correlations can be included from Pythia v8.150) seems to give consistent results.

UPDATE

now include $e+e-\rightarrow c c \tau+\tau-$, b b $\tau+\tau-$ processes
[previously only light uds quarks considered]

General strategy

consider 250 GeV running in H20 scenario

$$
\begin{aligned}
& \text { Pol(e-,e+)=(-0.8,+0.3), } 1350 \mathrm{fb}-1 \\
& \text { Pol }(\mathrm{e}-, \mathrm{e}+\mathrm{e})=(+0.8,-0.3), \quad 450 \mathrm{fb}-1
\end{aligned}
$$

select e+e- $\rightarrow(H \rightarrow \tau \tau)(Z \rightarrow e e, \mu \mu, q q)$ events
fully reconstruct tau momenta
reconstruct tau polarimeter vectors
look at angle between transverse components of polarimeters
use toy MC experiments to extract sensitivity to CP mixing angle

selection: leptonic Z decay

 one leptonic Z decay candidate\rightarrow particle ID
>=2 additional charged hadrons \rightarrow tau seeds
associate photons \rightarrow piO
with tau seeds
veto events with significant additional activity
select $\tau^{ \pm} \rightarrow \pi^{ \pm} v$ and $\tau^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} v$ decays
\rightarrow photon reconstruction
fully reconstruct tau momenta
use impact parameters of tau products balance event p_{T} impose tau mass
\rightarrow impact parameters ; momentum of Z

selection: hadronic Z decay

two tau-like jets (TauFinder)
\rightarrow tau identification
select $\tau^{ \pm} \rightarrow \pi^{ \pm} v$ and $\tau^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} v$ decays. \rightarrow photon reconstruction
rest of event \rightarrow "Z"
require mass consistent with mZ
fully reconstruct tau momenta
\rightarrow impact parameters ;
\rightarrow momentum of $Z \rightarrow$ JER
require tau-tau mass $\sim \mathrm{mH}$

UPDATE

various tweaks to reconstruction
e.g.
lepton ID identification of FSR \& bremsstrahlung photons
various tweaks to selection cuts
most to improve signal selection efficiency some to improve background rejection

Invariant mass of reconstructed tau-tau system muon channel, 1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

$\mu \mu$ tau tau (SM Higgs, tau \rightarrow pi or rho) signal $\mu \mu$ tau tau (SM Higgs, other tau decay channels) $\mu \mu$ tau tau (non-Higgs) background

pretty good tau momentum reconstruction

Invariant mass of reconstructed tau-tau system
hadronic channel, $1350 \mathrm{fb}-1$ @ $\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3)$

$\mu \mu$ tau tau (SM Higgs, tau \rightarrow pi or rho) signal
$\mu \mu$ tau tau (SM Higgs, other tau decay channels) $\mu \mu$ tau tau (non-Higgs) background

tau momentum
reconstruction much worse \rightarrow jet energy resolution

Reconstruction and selection efficiency

CP sens. angle (MC) [rad]
CP sens. angle (MC) [rad]
muon channel efficiency reduced somewhat
(due to now-included FSR?)
others slightly increased
(improved selection cuts?)
remain ~flat wrt CP angle
transverse spin correlations: after selection and reconstruction
muon channel
$1350 \mathrm{fb}-1$ @ $\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3)$
polDeltaPhi_mmtt_SMHs_PolOSel3

transverse spin correlations: electron channel

$$
1350 \text { fb-1 @ P(e-,e+) = (-0.8, +0.3) }
$$

polDeltaPhi_eett_SMHs_PolOSel3

signal:
CP even $\psi=0$
$\psi=\pi / 4$
Higgs bkg
non-H bkg
polDeltaPhi_eett_SMHs_Pol0Sel3

slightly more signal (better selection)
more modulated signal (FSR

transverse spin correlations: muon channel

$$
1350 \text { fb-1 @ P(e-,e+) = (-0.8, +0.3) }
$$

slightly less signal, and less modulated (FSR now included)
transverse spin correlations: quark channel $1350 \mathrm{fb}-1$ @ $\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3)$
polDeltaPhi_qqtt_SMHs_Pol0Sel3

polDeltaPhi_qqtt_SMHs_Pol0Sel3

signal:

CP even $\psi=0$
$\psi=\pi / 4$
Higgs bkg non-H bkg
more events (added cctautau, bbtautau)
slightly more modulated (FSR fixed)

Estimation of sensitivity

Assume: sinusoidal signal flat background \rightarrow fit parameters

Use fit functions to run toy MC experiments
assume total xsec
 independent of CP
\rightarrow maybe not a valid assumption: extra information in xsec variation
extract phase of $\delta \varphi$ variation using unbinned maximum likelihood fit
$\mu \mu \tau \tau$ channel some toy MC experiments

$$
\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3), 1350 \mathrm{fb}-1
$$

htoy

noy

UPDATE

Toy MC exps:
improved estimation of uncertainty on extracted phase:
manual scan to find points where -2*log(like) increases by 1.0
[previously directly used MINUIT errors]
pull distributions now all have width $1.0+/-0.1$
[previously up to ~ 1.4 in some cases]
expected error distribution rather non-symmetrical
\rightarrow now quote median rather than mean error [do you agree?]
(gives an artificial "improvement")

results of toy MC experiments: $\mu \mu \tau t$ channel

angle between trans polarimeters

$\mathrm{P}_{\text {hnomese }}^{\mathrm{P}}(\mathrm{e}+\mathrm{e}+\mathrm{)}=(-0.8,+0.3), 1350 \mathrm{fb}-1$

UPDATED: muon channel, full H20 (sum of both polarisations)
polDeltaPhi_mmtt_SMHs_Pol0Sel3

angle between trans polarimeters

hPhase

UPDATED: electron channel, full H20 (sum of both polarisations)

Tha, ePull

UPDATED: quark channel, full H20 (sum of both polarisations)

polDeltaPhi_qqtt_SMHs_PolOSel3

angle between trans polarimeters
hPhaseErr

hPhase

σ asePull

expected statistical uncertainti(erelim results@Santander)

 CP mixing angle $2 \psi[\psi=0$: CP even, $2 \psi=p i: C P$ odd $]$| channel | e ett | | $\mu \mu \tau \tau$ | | q q T T | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| polarisation | $\begin{gathered} (-0.8,+0.3) \\ 1350 \mathrm{fb}-1 \end{gathered}$ | $\begin{gathered} (+0.8,-0.3) \\ 450 \text { fb }-1 \end{gathered}$ | $\begin{gathered} (-0.8,+0.3) \\ 1350 \mathrm{fb}-1 \end{gathered}$ | $\begin{gathered} (+0.8,-0.3) \\ 450 \text { fb-1 } \end{gathered}$ | $\begin{gathered} (-0.8,+0.3) \\ 1350 \mathrm{fb}-1 \end{gathered}$ | $\begin{gathered} +0.8,-0.3) \\ 450 \text { fb-1 } \end{gathered}$ |
| signal efficiency | 31\% | 30\% | 50\% | 51\% | 16\% | 15\% |
| \# selected signal events | 36.3 | 7.9 | 56.7 | 12.9 | 221 | 48 |
| signal contrast | 0.28 | 0.28 | 0.48 | 0.50 | 0.28 | 0.25 |
| Signal / Background | 1.0 | 1.2 | 2.0 | 2.2 | 0.74 | 0.92 |
| mean err on
 2ψ [rad] | 0.9 | 1.4 | 0.5 | 0.9 | 0.4 | 0.8 |

mean error
0.8
0.5
0.4
on 2ψ [rad] mean error on 2ψ
[n.b. people usually quote error on ψ]
expected statistical uncertainties on CP mixing angle 2ψ [$\psi=0$: CP even, $2 \psi=p i$: CP odd]

channel	eett		$\mu \mu \tau \tau$		q q T T (uds/cc/bb)	
polarisation	$(-0.8,+0.3)$	$(+0.8,-0.3)$	$(-0.8,+0.3)$	$(+0.8,-0.3)$	$(-0.8,+0.3)$ $1350 \mathrm{fb}-1$	$\begin{gathered} (+0.8,-0.3) \\ 450 \text { fb- } \end{gathered}$
signal efficiency	36\%	35\%	45\%	45\%	28/25/19\%	28/25/19\%
\# selected signal events	42.1	9.2	51.0	11.4	584	131
signal contrast	0.47	0.47	0.44	0.46	0.38	0.38
Signal / Background	0.95	0.92	1.2	1.3	0.62	0.73
median error on 2ψ [rad]	0.61	1.1	0.57	0.97	0.25	0.47

median error
on 2ψ [rad]
0.57
0.51
0.22
median error on 2ψ
$0.190 \mathrm{rad} \sim \pi / 16.5 \mathrm{rad} \sim 10.9$ degrees
median error on ψ

5.45 degrees

summary

various updates to analysis:
fixed treatment of FSR
improvements to lepton and event selection
error estimation in toy MC experiments
definition of final CP mixing angle
updated estimate of sensitivity ~ 5.5 degrees on $\psi_{\text {CP }}$

writing a paper on 250 GeV
then move to 500 GeV .

backup slides

Identify hadronic tau candidates

>=2 additional charged PFOs 2 most energetic \rightarrow tau seeds
require oppositely charged seeds not identified as e/mu
group remaining photons into piOs if $\mathrm{m}<\mathrm{m}_{\text {tau }}$ with a tau seed use mass constrained kinematic pi0 fit
add unpaired photons to nearest

veto events with > 10 GeV charged or neutral hadron energy or pT in addition to Z and tau candidates
(some from underlying event allowed)
select tau \rightarrow pi, tau \rightarrow rho decays based on number of photons/pi0 and visible mass of tau jet
reconstruct tau momenta
using impact parameters, measured momenta imposing tau mass, pT balance (details in NIM A 810 p51)
require successful reconstruction
select $\mathbf{H} \rightarrow$ tau tau
require tau-tau mass consistent with m_{H} require Z recoil mass consistent with m_{H}

measure CP properties

 reconstruct tau polarimeters
using measured momenta and reconstructed $p_{\text {tau }}$

Hadronic Z decay channels

use TauJetFinder (T. Suehara) to look for narrow, isolated, low mass tau jet candidates
require exactly 2 tau jet candidates, each with a singlecharged particle oppositely charged

Assign remainder of event to the Z:
require a certain range of invariant mass and recoil mass for this system

The proceed as for leptonic channels

event reconstruction depends largely on:

tau decay mode identification
\rightarrow pattern recognition in ECAL
impact parameter resolution
\rightarrow vertex detector
jet energy resolution

significantly less signal contrast significantly largerhack jrown Is higher statistics i ha dr n :c ann

typical selection efficiencies

selection chan. \rightarrow (tau decays) \downarrow	e e т т	$\mu \mu \tau \tau$	q q т т
signal (pi, pi)	-39%	$\sim 68 \%$	$\sim 20 \%$
signal (pi, rho)	$\sim 33 \%$	$\sim 53 \%$	$\sim 17 \%$
signal (rho rho)	$\sim 27 \%$	$\sim 44 \%$	$\sim 14 \%$

transverse spin correlations

If everything is known perfectly, this is distributed as

$$
f(\delta \varphi) \sim 1+\left(\pi^{2} / 16\right) \cos (\delta \varphi+\psi)
$$

results of toy MC experiments: eett channel

$$
\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3), 1350 \mathrm{fb}-1
$$

results of toy MC experiments: qqit channel

$$
\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3), 1350 \mathrm{fb}-1
$$

polDeltaPhi_qqtt_SMHs_PolOSel3

angle between trans polarimeters

Thase Pull

Results all preliminary

several caveats:

- selections not carefully optimised
- included major, but not all, backgrounds
- increased MC statistics required in places
- pull distributions not perfect: probable underestimation of uncertainties

CP Violation needed to explain baryon asymmetry of universe
currently known sources of CPV not sufficient
Higgs of the minimal SM is CP even eigenstate, with CP conserving couplings
more complex models often also have CP odd states
(H_{125} being pure CP odd is \sim ruled out by LHC)
in the case of CP violation in the Higgs sector, H and/or its decay products may not be an eigenstate of CP
could the Higgs sector be an additional source of CPV?

leptonic preselection:

exactly 1 Z candidate:
pair of opposite sign, same MarlinPandora PID leptons E_lep > 20 GeV
add photons within cosTheta>0.99 of lepton ($\mathrm{m}-\mathrm{m} _\mathrm{Z}$) < 10 (15) GeV for mumu (ee)
reject if $Z \rightarrow$ ee $\& \mid \operatorname{costh}($ electron $) \mid>0.95$
require >= 2 additional charged PFOs
highest energy pair considered as tau seeds
require than tau seeds not identified as electron or muon and that seeds have opposite charge
starting with highest energy photons,
look for piO candidates which match a tau seed
[reasonable probability in constrained mass pi0 fit, total mass with seed < m_tau]
unpaired photons: attach to nearest tau if mass < m_tau

leptonic selection

```
tighter lepton-lepton mass cut, within 10 GeV of m_Z for electrons
total pT and energy of remaining charged PFOs < 10 GeV
total pT and energy of neutral hadron PFOs < 10 GeV
visible mass of each tau jet < 1 GeV
no more than 1 pi0 candidate attached to each tau jet
<4 photon PFOs attached to each tau jet
successful reconstruction of tau momenta
110 GeV < tau-tau mass < 140 GeV
recoil mass > 110 (120) GeV for ee (mm)
```


hadronic preselection

exactly 2 tau jets from TauFinder
each tau jet contains 1 charged particle, not identified as electron or muon each tau jet contains 0 neutral hadrons
each tau jet contains <=3 photons
oppositely charged tau jets

hadronic selection

invariant mass of remainder of event $70 \rightarrow 110 \mathrm{GeV}$
successful reconstruction of tau momenta
100 GeV < tau-tau mass < 150 GeV
recoil mass > 110 GeV

Tau jet mass (e e t t selection)

$$
\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3), 1350 \mathrm{fb}-1
$$

eett channel

$$
P(e-, e+)=(-0.8,+0.3), 1350 \mathrm{fb}-1
$$

angle between trans polarimeters

suspiciously large

qqtt channel

results of toy MC experiments

$$
P(e-, e+)=(-0.8,+0.3), 1350 \mathrm{fb}-1
$$

angle between trans polarimeters

suspiciously large

Visible mass of tau candidate jets
electron channel, 1350 fb-1 @ $P(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3)$

e e tau tau (SM Higgs, tau \rightarrow pi or rho) signal e e tau tau (SM Higgs, other tau decay channels) e e tau tau (non-Higgs) background

