Measuring the CP state of tau pairs from Higgs decay at ILC in ILD

June 2016: first update

15 July 2016: Further update

updates after ECFA-LC workshop @Santander

Daniel Jeans

CP-violating coupling of Higgs to fermions possible at tree level

```
\mathcal{L} \sim g f (\cos \psi_{CP} + i \gamma^5 \sin \psi_{CP}) f H
CP conserving coupling: \psi_{CP} = 0
maximally violating \psi_{CP} = \pi/2
```

```
consider projection of spin on some axis: \uparrow, \downarrow spin state of pair of spin ½ particles produced by spin-0 parent: \sim (|\uparrow\downarrow\rangle + e^{2i\psi}|\downarrow\uparrow\rangle) \psi_{CP} = 0 : CP even eigenstate \psi_{CP} = \pi/2 : CP odd eigenstate otherwise a mixture
```

decays of Higgs to tau pairs allows this to be probed

H decay to taus has significant BR

tau spin s can be partially reconstructed from decay product distribution

$$\Gamma(\tau \rightarrow X) \sim (1 + a h (X) \cdot s)$$

h (X) is the polarimeter vector most likely tau spin direction for a given configuration X of its decay products

easy to calculate for
$$\tau^{\pm} \rightarrow \pi^{\pm} \nu$$
 (~11%) $\pi^{\pm} \pi^{0} \nu$ (~26%)

CP effects best seen in correlation of spin components transverse to tau momentum: $\Gamma(\text{CP even/odd} \rightarrow \text{f}^+\text{f}^-) \sim 1 - \text{s}^+_z \, \text{s}^-_z \, + \text{I} - \text{s}^+_\perp \, \text{s}^-_\perp$

$$dN/(d\cos\theta^+d\cos\theta^-d\phi^+d\phi^-) \propto 1 + \cos\theta^+\cos\theta^- - \sin\theta^+\sin\theta^-\cos(\Delta\phi - 2\psi_{\rm CP}).$$

 θ , ϕ are direction of polarimeter wrt tau- momentum in tau rest frames $\Delta \phi = \phi^+ - \phi^-$; ψ_{CP} is the CP mixing angle we want to measure

 $\Delta \phi$ distribution sensitive to ψ_{CP}

events with large ($\sin \theta^+ \sin \theta^-$) are more strongly affected by ψ_{CP} until now I have integrated over $\sin \theta^+ \sin \theta^-$ today I will show effect of not doing this integration

colours = different ranges of $\sin \theta^+ \sin \theta^-$

signal only, MC truth

```
split simulated & reconstructed MC data into 5 bins of sin \theta^+ sin \theta^- in each bin: estimate size of modulation and number of signal & background events
```

use this to make templates for toy MC experiments.

```
for each toy experiment, perform simultaneous likelihood fit to data in 5 bins and 3 channels (Z->ee, mm, qq) to extract single value of \psi_{\text{CP}}
```

(simultaneous fit is better behaved: otherwise rather small number of events per experiment, and somewhat non-gaussian errors)

also:

a few small tweaks to selection cuts now include also rather small contribution to H20 luminosity from (-0.8, -0.3) and (+0.8, +0.3) polarisations @ 250 GeV

integrating over $\sin \theta^+ \sin \theta^-$

all channels
results of 5000 toy mc experiments
no bias in phase extraction
pull distribution looks good

expected uncertainty: 90 mrad ~ 5.2 deg

5 bins in $\sin \theta^+ \sin \theta^-$

all channels
results of 5000 toy mc experiments
no bias in phase extraction
pull distribution looks good

expected uncertainty: 70 mrad ~ 4.0 deg

Summary (July update)

split data according to how perpendicular the polarimeters are to the tau momentum

H20 precision on ψ_{CP} improves: 90 \rightarrow 70 mrad

rather than binning data, a true 2d approach should improve result further → now studying

paper writing is progressing reasonably well

old slides

Full simulation & reconstruction

```
Whizard 2.2.8, CIRCE2 beam-strahlung, ISR e+e- \rightarrow f+f-\tau+\tau- (\tau+\tau- from 125 \ GeV \ Higgs) e+e- \rightarrow f+f-\tau+\tau- (\tau+\tau- not from Higgs) f=e, \mu, (uds) (some generator level cuts, particularly for e+e-\tau+\tau-)
```

Pythia v8.212 for hadronisation & FSR

```
Tauola c++-v1:1:4 UPDATE: tau decays now in Pythia 1. signal decays: \tau^{\pm} \rightarrow \pi^{\pm} \nu and/or \tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu "rho / \rho" 2. all \tau^{\pm} decays include spin correlations (H_{SM}, H_{CP}(\psi_{CP} = \pi/4), non-H)
```

Mokka simulation: ILD model ILD_o1_v05

standard Marlin/ILDConfig reconstruction [ilcsoft v01-17-09] background overlay standard Pandora steering (with recent photon reco)

UPDATE

found various FSR-related problems:

I had added FSR to electron and quark channels, but not to muon channel

I had not applied FSR correctly:
when tau radiates FSR,
tauola did not realise it comes from Higgs →
does not apply spin correlations in tau decay

now perform tau decays within pythia v8.212 instead of Tauola, "at same time" as doing FSR. (tau spin correlations can be included from Pythia v8.150) seems to give consistent results.

UPDATE

now include $e+e-\rightarrow c\ c\ t+\tau-$, b b $t+\tau-$ processes [previously only light uds quarks considered]

General strategy

consider 250 GeV running in H20 scenario Pol(e-,e+) = (-0.8, +0.3), 1350 fb-1 Pol(e-,e+) = (+0.8, -0.3), 450 fb-1

select e+e- \rightarrow (H \rightarrow τ τ) (Z \rightarrow ee, $\mu\mu$, qq) events

fully reconstruct tau momenta

reconstruct tau polarimeter vectors

look at angle between transverse components of polarimeters

use toy MC experiments to extract sensitivity to CP mixing angle

selection: leptonic Z decay

electron or muon charged hadron photon

one leptonic Z decay candidate

→ particle ID

>=2 additional charged hadrons

→ tau seeds

associate photons → pi0 with tau seeds

veto events with significant additional activity

select $\tau^{\scriptscriptstyle \pm}\!\to\,\pi^{\scriptscriptstyle \pm}\,\nu$ and $\tau^{\scriptscriptstyle \pm}\,\to\,\pi^{\scriptscriptstyle \pm}\,\pi^{\scriptscriptstyle 0}\,\nu$ decays

→ photon reconstruction

fully reconstruct tau momenta
use impact parameters of tau products
balance event p_T
impose tau mass

→ impact parameters; momentum of Z

require tau-tau mass ~ mH

selection: hadronic Z decay

two tau-like jets (TauFinder)

→ tau identification

select $\tau^{\pm} \rightarrow \pi^{\pm} \nu$ and $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu$ decays

→ photon reconstruction

rest of event → "Z" require mass consistent with mZ

fully reconstruct tau momenta

- → impact parameters;
- → momentum of Z → JER

require tau-tau mass ~ mH

UPDATE

```
various tweaks to reconstruction
e.g.
lepton ID
identification of FSR & bremsstrahlung photons
```

various tweaks to selection cuts most to improve signal selection efficiency some to improve background rejection

Invariant mass of reconstructed tau-tau system muon channel, 1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

after final selection ttMass bin full sim. and reco. events per 40 20 10 0 100 140 160 tau-tau mass [GeV]

μμ tau tau (SM Higgs, tau → pi or rho) signal μμ tau tau (SM Higgs, other tau decay channels) μμ tau tau (non-Higgs) background

pretty good tau momentum reconstruction

Invariant mass of reconstructed tau-tau system

hadronic channel, 1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

μμ tau tau (SM Higgs, tau → pi or rho) signal μμ tau tau (SM Higgs, other tau decay channels) μμ tau tau (non-Higgs) background tau momentum reconstruction much worse → jet energy resolution

Reconstruction and selection efficiency

muon channel efficiency reduced somewhat (due to now-included FSR?) others slightly increased (improved selection cuts?) remain ~flat wrt CP angle

transverse spin correlations: after selection and reconstruction

muon channel 1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

$$\sim 1 + a (\delta \phi + \psi_{CP})$$

clear phase shift for $\psi_{CP} = \pi/4$

statistics and the contrast "a" determines how well we can measure ψ_{CP}

$$a_{MC} = \pi^2/16 \sim 0.6$$

 $a_{reco} \sim 0.5$

backgrounds small and flat

UPDATE

definition of angular shift shift in distr $\sim 2\psi_{CD}$

 $\mathcal{L} \sim g f (\cos \psi_{CP} + i \gamma^5 \sin \psi_{CP}) f H$

transverse spin correlations: electron channel

1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

signal: $CP \text{ even } \psi = 0$ $\psi = \pi/4$ Higgs bkg non-H bkg

slightly more signal (better selection)

more modulated signal (FSR problem fixed)

transverse spin correlations: muon channel

1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

non-H bkg

slightly less signal, and less modulated (FSR now included)

transverse spin correlations: quark channel

1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

signal:
 CP even ψ = 0
 ψ = π/4
Higgs bkg
non-H bkg

more events (added cctautau, bbtautau)

slightly more modulated (FSR fixed)

Estimation of sensitivity

Assume: sinusoidal signal flat background → fit parameters

Use fit functions to run toy MC experiments

assume total xsec independent of CP

→ maybe not a valid assumption: extra information in xsec variation

extract phase of δφ variation using unbinned maximum likelihood fit

µµττ channel some toy MC experiments

UPDATE

Toy MC exps:

```
improved estimation of uncertainty on extracted phase:
manual scan to find points where -2*log(like) increases by 1.0
[previously directly used MINUIT errors]
pull distributions now all have width 1.0 +/- 0.1
[previously up to ~1.4 in some cases]
```

expected error distribution rather non-symmetrical

→ now quote **median** rather than **mean** error [do you agree?]

(gives an artificial "improvement")

results of toy MC experiments: μμττ channel

UPDATED: muon channel, full H20 (sum of both polarisations)

angle between trans polarimeters

UPDATED: electron channel, full H20 (sum of both polarisations)

UPDATED: quark channel, full H20 (sum of both polarisations)

expected statistical uncertainties on (prelim results@Santander)

CP mixing angle $2\psi / \psi = 0$: CP even, $2\psi = pi$: CP odd γ

channel	еетт		μμττ		qqττ			
polarisation	(-0.8, +0.3) 1350 fb-1	(+0.8, -0.3) 450 fb-1	(-0.8, +0.3) 1350 fb-1	(+0.8, -0.3) 450 fb-1	(-0.8, +0.3) 1350 fb-1	(+0.8, -0.3) 450 fb-1		
signal efficiency	31%	30%	50%	51%	16%	15%		
# selected signal events	36.3	7.9	56.7	12.9	221	48		
signal contrast	0.28	0.28	0.48	0.50	0.28	0.25		
Signal / Background	1.0	1.2	2.0	2.2	0.74	0.92		
mean err on 2ψ [rad]	0.9	1.4	0.5	0.9	0.4	0.8		
mean error on 2ψ [rad]	0.8		0.5		0.4			
mean error on 2ψ	0.3 rad $\sim \pi/10$ rad ~ 17 degrees							

[n.b. people usually quote error on ψ]

updated results

expected statistical uncertainties on $CP = pi : CP odd$] CP mixing angle $2\psi [\psi = 0 : CP even, 2\psi = pi : CP odd]$										
channel	еетт		μμττ		qqtt (uds/cc/bb)					
polarisation	(-0.8, +0.3) 1350 fb-1	(+0.8, -0.3) 450 fb-1	(-0.8, +0.3) 1350 fb-1	(+0.8, -0.3) 450 fb-1	(-0.8, +0.3) 1350 fb-1	(+0.8, -0.3) 450 fb-1				
signal efficiency	36%	35%	45%	45%	28/25/19%	28/25/19%				

51.0

0.44

1.2

0.57

0.51

0.190 rad ~ $\pi/16.5$ rad ~ 10.9 degrees

5.45 degrees

11.4

0.46

1.3

0.97

584

0.38

0.62

0.25

131

0.38

0.73

0.47

0.22

selected

signal

contrast

Signal /

Background

median error

median error

on 2ψ [rad]

on 2ψ [rad]

median error

median error

on 2ψ

on ψ

signal events

42.1

0.47

0.95

0.61

9.2

0.47

0.92

1.1

0.57

summary

various updates to analysis:

fixed treatment of FSR

improvements to lepton and event selection

error estimation in toy MC experiments

definition of final CP mixing angle

updated estimate of sensitivity ~ 5.5 degrees on ψ_{CP}

$$\mathcal{L} \sim g \overline{f} (\cos \psi_{CP} + i \gamma^5 \sin \psi_{CP}) f H$$

writing a paper on 250 GeV then move to 500 GeV.

backup slides

Identify hadronic tau candidates

>=2 additional charged PFOs 2 most energetic → tau seeds

require oppositely charged seeds not identified as e/mu

group remaining photons into pi0s if $m < m_{tau}$ with a tau seed use mass constrained kinematic pi0 fit

add unpaired photons to nearest tau candidate if resulting mass $< m_{tau}$

veto events with > 10 GeV charged or neutral hadron energy or pT in addition to Z and tau candidates

(some from underlying event allowed)

select tau → pi, tau → rho decays based on number of photons/pi0 and visible mass of tau jet

reconstruct tau momenta

using impact parameters,
measured momenta
imposing tau mass, pT balance
(details in NIM A 810 p51)
require successful reconstruction

select H → tau tau require tau-tau mass consistent with m_H require Z recoil mass consistent with m_L

measure CP properties

reconstruct tau polarimeters using measured momenta and reconstructed p_{tau} correlation of transverse components of polarimeters \rightarrow CP

39

Hadronic Z decay channels

use TauJetFinder (T. Suehara) to look for narrow, isolated, low mass tau jet candidates

require exactly 2 tau jet candidates, each with a single charged particle oppositely charged

Assign remainder of event to the Z: require a certain range of invariant mass and recoil mass for this system

The proceed as for leptonic channels

event reconstruction depends largely on:

tau decay mode identification

→ pattern recognition in ECAL

impact parameter resolution

→ vertex detector

jet energy resolution

electron channel

hadronic channel

1350 fb-1 @
$$P(e-,e+) = (-0.8, +0.3)$$

significantly less signal contrast significantly larger backgrounds higher statistics in hadren; conne

typical selection efficiencies

selection chan. → (tau decays) ↓	еетт	μμττ	qqtt
signal (pi, pi)	~39 %	~68 %	~20 %
signal (pi, rho)	~33 %	~53 %	~17 %
signal (rho rho)	~27 %	~44 %	~14 %

PRELIMINARY

transverse spin correlations

If everything is known perfectly, this is distributed as

$$f(\delta \phi) \sim 1 + (\pi^2/16) \cos(\delta \phi + \psi)$$

results of toy MC experiments: eeττ channel

$$P(e-,e+) = (-0.8, +0.3), 1350 \text{ fb-1}$$

results of toy MC experiments: qqtt channel

$$P(e-,e+) = (-0.8, +0.3), 1350 \text{ fb-1}$$

Results all preliminary

several caveats:

- selections not carefully optimised
- included major, but not all, backgrounds
- increased MC statistics required in places
- pull distributions not perfect:
 probable underestimation of uncertainties

CP Violation needed to explain baryon asymmetry of universe currently known sources of CPV not sufficient

Higgs of the minimal SM is CP even eigenstate, with CP conserving couplings

more complex models often also have CP odd states (H_{125}) being pure CP odd is ~ruled out by LHC)

in the case of CP violation in the Higgs sector, H and/or its decay products may not be an eigenstate of CP

could the Higgs sector be an additional source of CPV?

leptonic preselection:

```
exactly 1 Z candidate:
    pair of opposite sign, same MarlinPandora PID leptons
         E lep > 20 GeV
    add photons within cosTheta>0.99 of lepton
         (m - m Z) < 10 (15) GeV for mumu (ee)
reject if Z \rightarrow ee \& | costh(electron) | > 0.95
require >= 2 additional charged PFOs
    highest energy pair considered as tau seeds
require than tau seeds not identified as electron or muon
    and that seeds have opposite charge
starting with highest energy photons,
    look for piO candidates which match a tau seed
    [ reasonable probability in constrained mass pi0 fit,
         total mass with seed < m tau]
unpaired photons: attach to nearest tau if mass < m_tau
```

leptonic selection

tighter lepton-lepton mass cut, within 10 GeV of m_Z for electrons

total pT and energy of remaining charged PFOs < 10 GeV

total pT and energy of neutral hadron PFOs < 10 GeV

visible mass of each tau jet < 1 GeV no more than 1 pi0 candidate attached to each tau jet <4 photon PFOs attached to each tau jet

successful reconstruction of tau momenta

110 GeV < tau-tau mass < 140 GeV

recoil mass > 110 (120) GeV for ee (mm)

hadronic preselection

exactly 2 tau jets from TauFinder

each tau jet contains 1 charged particle, not identified as electron or muon each tau jet contains 0 neutral hadrons each tau jet contains <=3 photons oppositely charged tau jets

hadronic selection

invariant mass of remainder of event 70 → 110 GeV

successful reconstruction of tau momenta

100 GeV < tau-tau mass < 150 GeV

recoil mass > 110 GeV

Tau jet mass (e e τ τ selection)

$$P(e-,e+) = (-0.8, +0.3), 1350 \text{ fb-1}$$

eett channel

results of toy MC experiments

$$P(e-,e+) = (-0.8, +0.3), 1350 \text{ fb-1}$$

angle between trans polarimeters

qqtt channel results of toy MC experiments

$$P(e-,e+) = (-0.8, +0.3), 1350 \text{ fb-1}$$

angle between trans polarimeters

Visible mass of tau candidate jets electron channel, 1350 fb-1 @ P(e-,e+) = (-0.8, +0.3)

e e tau tau (SM Higgs, tau → pi or rho) signal e e tau tau (SM Higgs, other tau decay channels) e e tau tau (non-Higgs) background