Characterizing Light Higgsinos from Natural SUSY at ILC $\sqrt{s} = 500$ GeV

Jacqueline Yan (KEK)

On behalf of H. Baer (Univ of Oklahoma), M. Berggren, S.-L. Lehtinen, J. List (DESY), K. Fujii (KEK), T. Tanabe (Univ of Tokyo)

ILD Software

and Analysis Meeting

July 13, 2016

Outline

Status of 4f and 2f bkg

Received production of major 4f bkg samples with large statistics from Miyamoto-san over last two weeks Checked already that they are consistent with last DBD production Bkg distribution is much smoother now spikes in lower energy region due to aa2f and ae3f bkg conducting pre-selection studies (including modification of processor) •

before requesting SGV production to Mikael

Extraction of Higgsino Mass [work in progress]

- Neutralino mixed production with leptonic decay $e^+e^-
 ightarrow \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_2
 ightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$
- The position of the kinematic edges of the dilepton energy (E_{II}) and invariant mass (M_{II}) are functions of CM energy and the two neutralino masses.
- The maximum values E_{II,max} and M_{II,max} are extracted by a fit to obtain the neutralino masses after correcting for detector/reconstruction effects`

Similar for case of chargino pair production (II \rightarrow jj)

Cuts have been designed so as not to destroy upper edge

- Use toy MC (generated from MC data fit) to evaluate statistical uncertainty
- Making progress in kinematic edge extraction

Edge extraction precision ~1 %

Extraction of Cross Section [work in progress]

Strategy: Fit overall shape to estimate total number of signal events

The results of Higgsino mass and cross section become input to the parameter fit to extract SUSY parameters (e.g. Wino and Bino masses, $tan\beta$, etc.)

9

Extraction of Cross Section [work in progress]

Polarization (Pe-,Pe+) = (-0.8, +0.3)

Summary and Plans

Obtained preliminary results for some channels, presented at ILD Meeting (7/13)

- For neutralino: Edge precision 1.0 -1.5%, Cross section precision 3-5%
- Edge values generally consistent with theoretical values within uncertainty range
- For chargino : Cross section precision : 0.8%
- Still working on edge extraction : difficulties involving jet energy resolution
- Will probably use steepest slope method
- Need to observe change in signal distribution due to cuts by comparing with generator truth
- Need to implement gamma gamma overlay bkg
- Other CM energies and polarizations: precise mass determination, input necessary for theoretical studies, etc...

Additional Material

Extraction of Higgsino Mass [work in progress]

- The position of the kinematic edges of the dilepton energy (E_{II}) and invariant mass (M_{II}) are functions of CM energy and the two neutralino masses.
- The maximum values E_{II,max} and M_{II,max} are extracted by a fit to obtain the neutralino masses after correcting for detector/reconstruction effects`

Cuts have been designed so as not to destroy upper edge

- Use toy MC (generated from MC data fit) to evaluate statistical uncertainty
- Making progress in kinematic edge extraction

Edge extraction precision ~1 %

13

ILC1

Cross sections (pure beam polarizations) Vs=500 GeV with TDR beam parameters

(Pe-, Pe+)	(-1.0,+1.0)	(+1.0,-1.0)
σ(χ ₁ ⁺ χ ₁ ⁻) [fb]	1800	335
$\sigma(\chi_1^{0}\chi_2^{0})$ [fb]	491	379
σ(χ ₂ ⁰ χ ₃ ⁰) [fb]	11.0	8.42
σ(χ ₁ ⁰ χ ₁ ⁰) [fb]	2.03	1.56
σ(χ ₂ ⁰ χ ₂ ⁰) [fb]	0.53	0.41
σ(χ ₁ ⁰ χ ₃ ⁰) [fb]	0.28	0.20

Branching ratios

$BR(\chi_1^+ \to \chi_1^0 q q')$	67%
$BR(\chi_1^{+} \rightarrow \chi_1^{0} Iv) \ (I=e, \mu)$	22%
$BR(\chi_2^0 \to \chi_1^0 qq')$	58%
$BR(\chi_2^{\ 0} \rightarrow \chi_1^{\ 0} II) \ (I=e,\mu)$	7.4%

Cut table N1N2 , μμ (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
xsec	300.8	3.00E6	10566.2	2.68E6	261580	1065.2
N_gen	150395	1.50E9	5.28E6	1.34E9	1.31E8	532585
Lep_type nTrack=2	1974	9.1E8	444255	8.9E8	2.2E7	2426
BCAL veto	1950	6.0E6	149871	5.5E6	965354	2411
Pt_lep,1,2	1675	2.0E6	105721	1.4E6	295459	1986
cosθ_lep	1624	1.3E6	56001	910330	167734	1950
coplanarity	1407	48366	5272	3509	33067	22
Evis	1404	14325	2465	2248	4743	22
Emis, cosθmis	1393	1063	929	34	9	19
cosZ,Pt_ll, Minv	1393	545	429	34	9	19 15

Cut table C1C1, µtag (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
Xsec [fb]	1065.2	3.00E6	10566.2	2.68E6	261580	300.8
N_gen	532585	1.50E9	5.28E6	1.34E9	1.31E8	150395
nLep=1 BCAL veto	57983	1.5E9	443296	1.2E6	860530	1135
Ptmis	38240	2.7E6	377010	465397	519308	964
Jet_coplanarity	26085	1.5E6	86399	83683	109325	531
Jet_cosθ nTrack (per jet) > 1	14612	305870	3066	555	2234	22
cosθjet-lep Evis	14308	3753	791	100	41	0
Emis, cosθmis	14231	83	57	3	0	0
Pt_jj, M_jj	14173	51	31	3	0	0

Event Selection

- Reconstruct two leptons (ee or μμ) which originate from Z^{*} emission in decay of χ₂⁰ to χ₁⁰
- Major residual bkg. are 4f processes accompanied by large missing energy (vvll)
- 2-γ processes are removed by BeamCal veto, cuts on lepton track p_T, and coplanarity

Chargino pair production with semileptonic decay $e^+e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 q q' \ell \nu$

- Reconstruct two jets which originate from W^{*} emission in decay of χ₁[±] to χ₁⁰
- Use lepton (e or μ) from the other chargino as tag
- BeamCal veto, cuts on missing p_T, # of tracks, # of leptons, and coplanarity remove almost all bkg.

(signal significance > 100)

signal

(16)

2-v

 μ^{-}

1

signal

Ζ

 $\gamma(4)$

vvII

1

 $\bar{\nu}_e$ (8)