# LHCal MC simulation Updated Results

Yuriy Onishchuk

Kiev Taras Shevchenko National University

27-Jul-2016

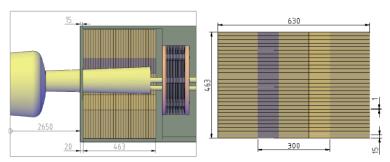


### General remarks

- The LHCal calorimeter have been intesively studied by Maryna and Vlad during last year
- They have successively graduated master's degree and go out Kiev group
- ullet This report finalizes and improves some results obtained by them: energy deposition response function for  $\mu$ , e,  $\gamma$ ,  $\pi$ , K within the 1-100 GeV particle energy interval



### Geometry


Geometry of the LHCal simulations is similar to Maryna's and Vlad's previous reports:

Total thickness: 463 mm

• Width in XY plane: 630 mm

Inner radius: 150 mm

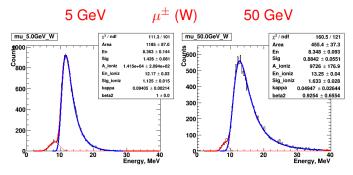
• Structure: 29 layers of 16 mm thickness





### Simulation features

- Particles divided on 3 groupes:
  - Muons (μ) exclusively ionisation energy losses
  - Leptons (electrons and  $\gamma$ ) as EM shower produced particles
  - Hadrons  $(\pi, K)$  as nuclearly and ionisationally interacted particles
- Initial energies: 1 − 100 GeV
- Number of simulated events: 50,000
- Events with penetration into internal and external edge regions (15 mm thickness) are removed to minimise an influence of lateral energy leakage
- Two types of absorbers: Fe and W




### $\mu$ response

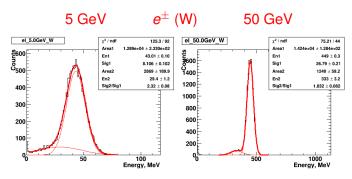
- assymetrical shape with maximum at 10-12 MeV nicely described by Vavilov function
- additional small component at 8-11 MeV can be described by gaussian
- ullet  $\mu$  response,  $R_{\mu}$ , weighted sum of Vavilov and Gaus (5 and 3 parameters)

$$R_{\mu} = A_{V} \cdot V(\lambda_{V}, \kappa, \beta^{2}) + A_{G} \cdot G(E, E_{G0}, \sigma)$$

- V Vavilov function with  $\lambda_V = \frac{E E_{V0}}{\sigma_V}$
- $G(E, E_{G0}, \sigma)$  normalized Gaus



- slow sensitivity of  $\mu$  response to an initial particle energy
- similar shape behavior for Fe and W absorbers

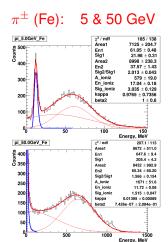



### Lepton response: $e, \gamma$

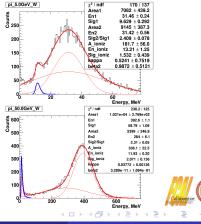
- Leptons electrons and  $\gamma$ 's as EM shower produced particles
- Central region (narrow peak) and marginal part (wide tail) can be described by two gaussians:

$$R_L = A_1 \cdot G(E, E_{01}, \sigma_1) + A_2 \cdot G(E, E_{02}, \sigma_2), \quad \sigma_2 > \sigma_1$$

• Energy distributions for electrons and  $\gamma$ 's are similar

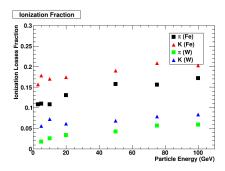






### Hadron response: $\pi$ , K

 Hadrons as nuclearly and ionisationally interacted particles have the most complicated response function:

$$R_H = A_1 \cdot G(E, E_{01}, \sigma_1) + A_2 \cdot G(E, E_{02}, \sigma_2) + A_V \cdot V(\lambda_V, \kappa, \beta^2), \quad \sigma_2 > \sigma_1$$




## $\pi^{\pm}$ (W): 5 & 50 GeV

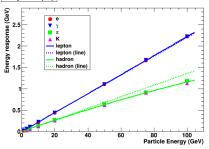


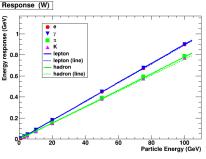
### Ionisation fraction at hadron response

- Part of hadrons penetrates the 46 cm-thickness calorimeter without nuclear interaction
- These hardons can be associated with "ionisation" peak (as muons)
- ullet Fraction of ionisation events is of 0.05 0.2 for Fe and W absorbers
- Fe absorber gives 3-4 times larger values
- Kaons have a bit bigger values in comparison with pions






### response linearity


- Fitted parameters of narrow gaussian were used
- 2nd degree polynomial fit:

$$E_{deposit} = A \cdot (E_{init} - \frac{1}{2}BE_{init}^2)$$

|               | Fe       |              |                         |  |  |  |  |  |
|---------------|----------|--------------|-------------------------|--|--|--|--|--|
|               | Particle | A, MeV/GeV   | B, MeV/GeV <sup>2</sup> |  |  |  |  |  |
|               | Lepton   | 22.03 ± 0.03 | $-0.20 \pm 0.03$        |  |  |  |  |  |
|               | Hadron   | 13.57 ± 0.35 | 2.93 ± 0.05             |  |  |  |  |  |
| Response (Fe) |          |              |                         |  |  |  |  |  |
| _             |          |              |                         |  |  |  |  |  |



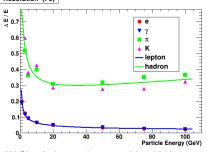




- Sufficient nonlinearity for hadrons in Fe ( $B_{H,Fe} = 2.93$ ) in comparison with W ( $B_{H,W}$
- W-Si sandwich is guite close to compensated sampling calorimeter
- Fe-Si calorimeter is considerably undercompensated

### **Energy resolution**

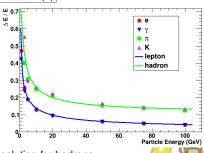
Energy resolution fit function:


$$\frac{\Delta E}{E} = \frac{A}{\sqrt{E}} \oplus B \oplus C\sqrt{E}$$

 3rd component, C, describes increasing of the energy resolution for hadrons in Fe caused by longitudinal and lateral leakage

Fe

| Particle | A, GeV <sup>1/2</sup> | B, 10 <sup>-2</sup> | C, GeV -1/2       |
|----------|-----------------------|---------------------|-------------------|
| Lepton   | 0.197±0.001           | 1.68±0.28           | $0.0\pm0.001$     |
| Hadron   | 0.83±0.09             | 0.22±0.06           | $0.023 \pm 0.008$ |


#### Resolution (Fe)



W

| Particle | A, GeV <sup>1/2</sup> | B, 10 <sup>-2</sup> | C, GeV - 1/2  |
|----------|-----------------------|---------------------|---------------|
| Lepton   | 0.437±0.007           | 0.02±1.78           | $0.0\pm0.002$ |
| Hadron   | 0.74±0.04             | 11.2±2.23           | $0.0\pm0.031$ |
|          |                       |                     |               |

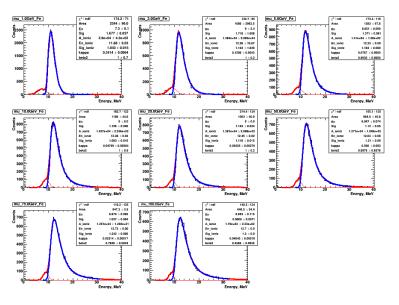
Resolution (W)



 W-Si calorimeter has considerably better energy resolution for hadrons and a bit worser for leptons

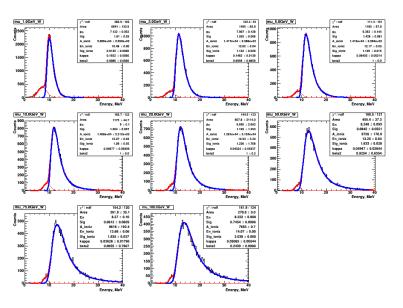


### Conclusions


- Improved description of response functions was obtained
- Linearity of response functions has been checked
- Energy resolution parameters for leptons and hadrons was obtained
- Ionisation fraction at hadron response was studied

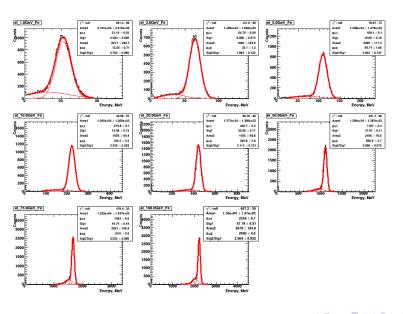


### Upload slides



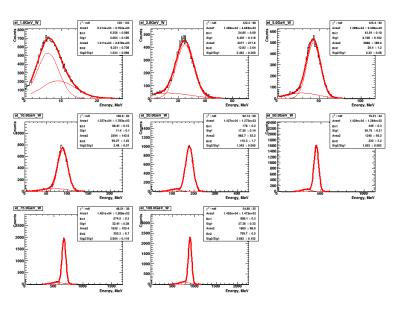

### $\mu$ in Fe





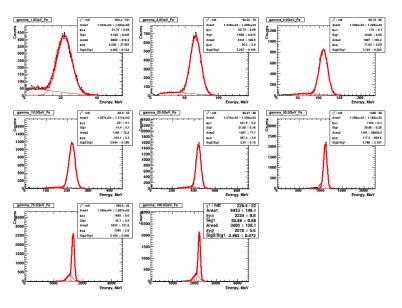

### $\mu$ in W





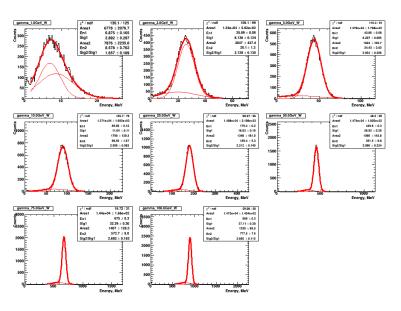

### $e^{\pm}$ in Fe





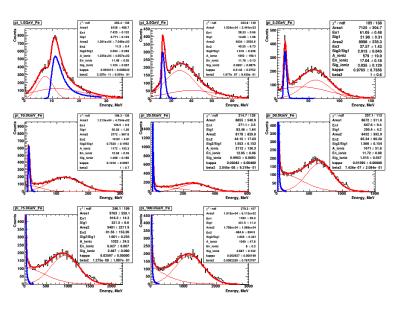

### e<sup>±</sup> in W






### $\gamma$ in Fe

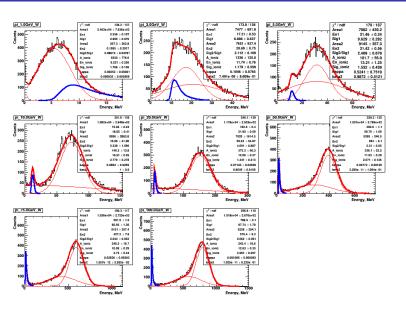





### $\gamma$ in W

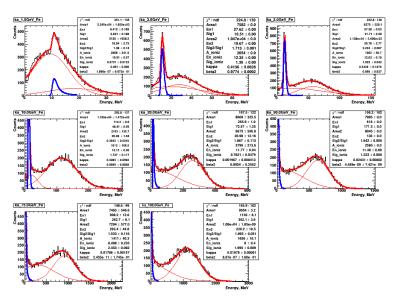





### $\pi$ in Fe

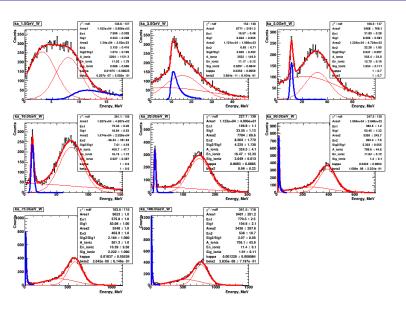







### $\pi$ in W






### K in Fe





### K in W



