SUSY model and dark matter determination in the compressed-spectrum region at the ILC.

Mikael Berggren¹

on behalf of the ILC Physics and Detector Study

¹DESY, Hamburg

ICHEP, Chicago, II, August, 2016

Outline

- The ILC
- Why compressed spectra
 - Compressed spectra: Naturalness
 - Compressed spectra : DM
 - Compressed spectra: Why not seen @ LHC?
 - Compressed spectra: The data
- The Stau-coannihilation STCx models
 - The STCx benchmark @ ILC
 - STC4 sleptons @ 500 GeV
 - STC4 bosinos @ 500 GeV
 - STC4 bosinos @ 500 GeV
 - STC4 @ 500 GeV: Prospects for mixing measurements
- 4 Conclusions

The ILC

- A linear $e^{\frac{c_1}{e}}e^{\frac{c_2}{e}}$ collider.
- E_{CMS} tunable between 250 and 500 GeV, upgradable to 1 TeV.
- Total length 31 km
- $\int \mathcal{L} \sim 250 \text{ fb}^{-1}/\text{year}$. 20 year plan in place.
- Polarisation e^- : 80%, e^+ : \geq 30%.
- 2 experiments, but only one interaction region.
- Concurrent running with the LHC.
- Under government study in Japan.

3/18

The ILC

- A linear $e^{\frac{c_1}{e}}e^{\frac{c_2}{e}}$ collider.
- E_{CMS} tunable between 250 and 500 GeV, upgradable to 1 TeV.
- Total length 31 km
- $\int \mathcal{L} \sim 250 \text{ fb}^{-1}/\text{year}$. 20 year plan in place.
- Polarisation e^- : 80%, e^+ : > 30%.
- 2 experiments, but only one interaction region.
- Concurrent running with the LHC.
- Under government study in Japan.

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties
 - No "underlying event"
 - Low cross-sections wrt. LHC. also for background.
 - But: γγ-processes...
 - Trigger-less operation.
- Extremely small beam-spot: 5 nm \times 100 nm \times 150 μ m.
- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered
 - = Area of Connecticut relative to earth.

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlying event".
 - Low cross-sections wrt. LHC, also for background.
 - But: $\gamma\gamma$ -processes...
 - Trigger-less operation.
- Extremely small beam-spot: 5 nm \times 100 nm \times 150 μ m.
- Low background ⇒ detectors can be:
 - Thin: few % X_n in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered
 - = Area of Connecticut relative to earth.

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlying event".
 - Low cross-sections wrt. LHC, also for background.
 - But: $\gamma\gamma$ -processes...
 - Trigger-less operation.
- Extremely small beam-spot: 5 nm \times 100 nm \times 150 μ m.
- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Connecticut relative to earth.

Why compressed spectra?

Why would one expect the spectrum to be compressed?

Why compressed spectra? Natural SUSY: Light, degenerate higgsinos

Because it is natural!

- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale})$.
 - If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $M_{\tilde{\chi}_1^0}$, $M_{\tilde{\chi}_1^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
 - Or: Radiative driven natural susy
 - Still χ₁, χ₂ and χ₁ almost pure higgsino
 ΔM still small, but more like 10-20 GeV.
- However: Not enough Dark Matter

Why compressed spectra? Natural SUSY: Light, degenerate higgsinos

Because it is natural!

- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale})$.
 - If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $M_{\tilde{\chi}_{1}^{0}}$, $M_{\tilde{\chi}_{+}^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
 - Or: Radiative driven natural susy
 - Still $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ almost pure higgsino
 - ΔM still small, but more like 10-20 GeV.
- However: Not enough Dark Matter

Why compressed spectra? Natural SUSY: Light, degenerate higgsinos

Because it is natural!

- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale})$.
 - If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $M_{\tilde{\chi}_{1}^{0}}$, $M_{\tilde{\chi}_{+}^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
 - Or: Radiative driven natural susy
 - Still $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ almost pure higgsino
 - ΔM still small, but more like 10-20 GeV.
- However: Not enough Dark Matter

Why compressed spectra? DM and the weak miracle

Because can give the right Dark Matter!

- Need balance between early universe production and decay.
- One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Once again Compressed spectrum.
- Often the main process (from Matercode)

Why compressed spectra? DM and the weak miracle

Because can give the right Dark Matter!

- Need balance between early universe production and decay.
- One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Once again Compressed spectrum.
- Often the main process (from Matercode)

$$\tilde{\chi}_{1}^{0}$$
 $\tilde{\chi}_{1}^{0}$
 \tilde{f}
 $\tilde{\chi}_{1}^{0}$
 \tilde{f}
 $\tilde{\chi}_{1}^{0}$
 $\tilde{\tau}$
 $\tilde{\tau}$
 $\tilde{\chi}_{1}^{0}$
 $\tilde{\tau}$
 $\tilde{\chi}_{2}^{0}$
 $\tilde{\chi}_{3}^{0}$
 $\tilde{\tau}$

Why compressed spectra? DM and the weak miracle

Because can give the right Dark Matter!

- Need balance between early universe production and decay.
- One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Once again Compressed spectrum.
- Often the main process (from Matercode)

 Plank: Cosmological abundance from CMB: Δ=2 %.

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\widetilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

 Plank: Cosmological abundance from CMB: Δ=2 %.

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\tilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

 Plank: Cosmological abundance from CMB: Δ=2 %.

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\tilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

 Plank: Cosmological abundance from CMB: Δ=2 %.

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\tilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

 Plank: Cosmological abundance from CMB: Δ=2 %.

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\tilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

 Plank: Cosmological abundance from CMB: Δ=2 %.

Accelerator:

 Relic abundance using micrOMEGAs:

- Mumasses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

- LHC excludes 1:st & 2:nd generation squarks and gluinos. These states have no influence on DM, g-2, naturalness, ...
- le.: The reason that mSUGRA/CMSSM is dead is the irrelevant part!
- If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- Ie. *NOT* a simplified model, *NOR* a large missing E_T one.
- Remove connection 1:st & 2:nd gen \tilde{q} :s and $\tilde{g} \leftrightarrow$ 3:d gen. \tilde{q} :s and EW-sector \Rightarrow Compressed spectra not excluded. Price: more free parameters.
- (Actually, the U(1) and SU(2) masses (M₁ and M₂) can still unify).
- However, LHC will discover/exclude our model in the next few years: See M.B. & al. EPJC, 76(4),1 (2016) (=arXiv:1508.04383).

- LHC excludes 1:st & 2:nd generation squarks and gluinos. These states have no influence on DM, g-2, naturalness, ...
- le.: The reason that mSUGRA/CMSSM is dead is the irrelevant part!
- If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- le. NOT a simplified model, NOR a large missing E_T one.
- Remove connection 1:st & 2:nd gen \tilde{q} :s and $\tilde{g} \leftrightarrow$ 3:d gen. \tilde{q} :s and EW-sector \Rightarrow Compressed spectra not excluded. Price: more free parameters.
- (Actually, the U(1) and SU(2) masses (M₁ and M₂) can still unify).
- However, LHC will discover/exclude our model in the next few years: See M.B. & al. EPJC, 76(4),1 (2016) (=arXiv:1508.04383).

- LHC excludes 1:st & 2:nd generation squarks and gluinos. These states have no influence on DM, g-2, naturalness, ...
- Ie.: The reason that mSUGRA/CMSSM is dead is the irrelevant part!
- If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- le. NOT a simplified model, NOR a large missing E_T one.
- Remove connection 1:st & 2:nd gen \tilde{q} :s and $\tilde{g} \leftrightarrow$ 3:d gen. \tilde{q} :s and EW-sector \Rightarrow Compressed spectra not excluded. Price: more free parameters.
- (Actually, the U(1) and SU(2) masses (M₁ and M₂) can still unify).
- However, LHC will discover/exclude our model in the next few years: See M.B. & al. EPJC, 76(4),1 (2016) (=arXiv:1508.04383).

- LHC excludes 1:st & 2:nd generation squarks and gluinos. These states have no influence on DM, g-2, naturalness, ...
- le.: The reason that mSUGRA/CMSSM is dead is the irrelevant part!
- If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- le. NOT a simplified model, NOR a large missing E_T one.
- Remove connection 1:st & 2:nd gen \tilde{q} :s and $\tilde{g} \leftrightarrow$ 3:d gen. \tilde{q} :s and EW-sector \Rightarrow Compressed spectra not excluded. Price: more free parameters.
- (Actually, the U(1) and SU(2) masses (M₁ and M₂) can still unify).
- However, LHC will discover/exclude our model in the next few years: See M.B. & al. EPJC, 76(4),1 (2016) (=arXiv:1508.04383).

- LHC excludes 1:st & 2:nd generation squarks and gluinos. These states have no influence on DM, g-2, naturalness, ...
- le.: The reason that mSUGRA/CMSSM is dead is the irrelevant part!
- If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- le. NOT a simplified model, NOR a large missing E_T one.
- Remove connection 1:st & 2:nd gen \tilde{q} :s and $\tilde{g} \leftrightarrow$ 3:d gen. \tilde{q} :s and EW-sector \Rightarrow Compressed spectra not excluded. Price: more free parameters.
- (Actually, the U(1) and SU(2) masses (M₁ and M₂) can still unify).
- However, LHC will discover/exclude our model in the next few years: See M.B. & al. EPJC, 76(4),1 (2016) (=arXiv:1508.04383).

Why compressed spectra? Global fits

Because it fits the observations best!

pMSSM10 prediction: best-fit masses

- ⇒ high colored masses
- ⇒ relatively low electroweak masses partially with not too large ranges
- ⇒ clear prediction for ILC and CLIC

10 / 18

The Stau-coannihilation STCx models

High mass squarks+gluino

Well-tempered higgs, bosino and slepton sector

Varying 3-gen squarks

Zoomed STCx mass-spectrum

Cross-sections

Cross-sections

\Rightarrow At the ILC@500 GeV:

ੂੰ Signal:

- Typically: a few leptons + LSP:s ⇒
 - Low multiplicity events.
 - Central, much missing energy.
- Cross-sections up to 1 pb+.
- Often cascades over $\tilde{\tau}_1$.
- $\Delta(M) \sim 10 \text{ GeV} \Rightarrow E_{\tau} \in [2.3, 45.5] \text{ GeV}.$

Background:

- Real missing energy = ZZ, $WW \rightarrow \ell\ell\nu\nu$
- Fake missing energy = $\gamma\gamma$ processes, ISR, single IVB.

Cross-sections

\Rightarrow At the ILC@500 GeV:

[≘] Signal:

- Typically : a few leptons + LSP:s ⇒
 - Low multiplicity events.
 - Central, much missing energy.
- Cross-sections up to 1 pb+.
- Often cascades over $\tilde{\tau}_1$.
- $\Delta(M) \sim 10 \text{ GeV} \Rightarrow E_{\tau} \in [2.3, 45.5] \text{ GeV}.$

Background:

- Real missing energy = ZZ, $WW o \ell\ell
 u
 u$
- Fake missing energy = $\gamma\gamma$ processes, ISR, single IVB.

Cross-sections

\Rightarrow At the ILC@500 GeV:

[≘] Signal:

- Typically : a few leptons + LSP:s ⇒
 - Low multiplicity events.
 - Central, much missing energy.
- Cross-sections up to 1 pb+.
- Often cascades over $\tilde{\tau}_1$.
- $\Delta(M) \sim 10 \text{ GeV} \Rightarrow E_{\tau} \in [2.3, 45.5] \text{ GeV}.$

Background:

- Real missing energy = ZZ, $WW \rightarrow \ell\ell\nu\nu$
- Fake missing energy = $\gamma\gamma$ processes, ISR, single IVB.

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{iet}, beam-pol 80%,-30%...

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{iet}, beam-pol 80%,-30%...

STC4 sleptons @ 500 GeV: $\tilde{e}, \tilde{\mu}$

• Selections for $\tilde{\mu}$ and \tilde{e} :

Results from edges (E_{CMS} =500, 500 fb⁻¹ @ [+0.8,-0.3])

selectrons:

$$M_{{
m \widetilde e_R}}=126.20\pm 0.21~{
m GeV}/c^2 \ M_{{
m \widetilde \chi}_1^0}=95.47\pm 0.16~{
m GeV}/c^2 \ {
m smuons:}$$

 $M_{\widetilde{\mathcal{U}}_{\mathcal{U}}}$

$$M_{\widetilde{\mu}_{\rm R}} = 126.01 \pm 0.51 \; {
m GeV}/c^2 \ M_{\widetilde{\chi}_1^0} = 95.47 \pm 0.38 \; {
m GeV}/c^2$$

• I combined:

$$\sigma_{ extbf{M}_{\widetilde{\chi}_0^0}} = 147 \; ext{MeV}/ extit{c}^2 \qquad \sigma_{ extbf{M}_{\widetilde{\ell}_R}} = 194 \; ext{MeV}/ extit{c}^2$$

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$

Selections for $\tilde{ au}_1$:

- Correct charge.
- P_T wrt. beam and one τ wrt the other.
- $M_{iet} < M_{ au}$
- E_{vis} < 120 GeV, M_{vis} \in [20, 87] GeV.
- Cuts on polar angle and angle between leptons.
- Little energy below 30 deg, or not in τ-jet.
- At least one τ-jet should be hadronic.
- Anti- $\gamma\gamma$ likelihood.

- Only the upper end-point is relevant. §
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY background, but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant. §
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant. §
- Background subtraction:

Results for $\tilde{\tau}_1$

$$E_{max,\tilde{\tau}_1} = 44.49^{+0.11}_{-0.09} \text{GeV}$$

Translates to an error on the mass of 0.27 ${\rm GeV}/c^2$, dominated by the error from M_{v^0} .

Results for $\tilde{\tau}_2$

$$E_{max, \tilde{\tau}_2} = 145.4^{+5.9}_{-4.4} \text{GeV}$$

Translates to an error on the mass of 5 GeV/c^2 , dominated by the error from the end-point.

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two τ :s + nothing (like $\tilde{\tau}$ -pairs)
- However: Cascade decay, meaning that the two τ:s have different spectra
 ⇒ can often select first and second decay unambiguously
- The τ from $\tilde{\tau} \to \tau \tilde{\chi}_1^0$ decay ...
- ... and from $\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau$
- Endpoint of first decay: $\Delta = 700 \text{ MeV}$ $\Rightarrow \Delta(M_{\tilde{\chi}_2^0}) = ??? \text{ MeV}$, assuming the error on $M_{\tilde{\tau}_1}$ from the previous slide.

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two τ :s + nothing (like
- that the two τ :s have different spectra $\frac{\lambda_0^{\frac{50}{2}}}{900}$ \Rightarrow can often select first and social lecay unamb However: Cascade decay, meaning
- The τ from $\tilde{\tau} \to \tau \tilde{\chi}_1^0$ decay ...
- ... and from $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau$
- Endpoint of first decay: $\Delta = 700 \text{ MeV}$

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two τ :s + nothing (like $\tilde{\tau}$ -pairs)
- However: Cascade decay, meaning that the two *τ*:s have different spectra ⇒ can often select first and second decay unambiguously
- The au from $ilde{ au} o au ilde{\chi}^0_1$ decay ...
- ... and from $\tilde{\chi}^0_2
 ightarrow \tilde{ au}_1 au$
- Endpoint of first decay: $\Delta = 700 \text{ MeV}$ $\Rightarrow \Delta(M_{\tilde{\chi}_2^0}) = ??? \text{ MeV}$, assuming the error on $M_{\tilde{\chi}_1}$ from the previous slide.

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two τ :s + nothing (like $\tilde{\tau}$ -pairs)
- ¬-pairs)
 However: Cascade decay, meaning that the two τ:s have different spectra ⇒ can often select first and second decay unambiguously
- The au from $ilde{ au} o au ilde{\chi}^0_1$ decay ...
- ullet ... and from $ilde{\chi}_2^0
 ightarrow ilde{ au}_1 au$
- Endpoint of first decay: $\Delta = 700 \text{ MeV}$ $\Rightarrow \Delta(M_{\tilde{\chi}_2^0}) = ??? \text{ MeV}$, assuming the error on $M_{\tilde{\tau}_1}$ from the previous slide.

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two τ :s + nothing (like $\tilde{\tau}$ -pairs)
- However: Cascade decay, meaning that the two Summary of slepton and bosino masses:
 ⇒ can ofte Per mil-level mass-measurements will be decay unar possible at the ILC
- The τ from $\tau \to \tau \chi_1$ uccay ...
- ... and from $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau$
- Endpoint of first decay: $\Delta = 700 \text{ MeV}$ $\Rightarrow \Delta(M_{\tilde{\chi}_2^0}) = ??? \text{ MeV}$, assuming the error on $M_{\tilde{\tau}_1}$ from the previous slide.

- $\theta_{\tilde{\tau}}$: Several options:
 - Cross-section, once $M_{\tilde{\tau}}$ (and E_{CM}) is known only depends on $\theta_{\tilde{\tau}}$.
 - Cross-section difference for RL and LR: For clean signal for LR: lower E_{CM}.
 - If all sleptons are equal at the GUT scale: difference between M_{ẽR} and M_{r̃} directly gives the mixing.
 - Cross-section of $\tilde{\tau}_1 \tilde{\tau}_2$ production useful, but very low rate.
 - Percent-level measurement likely.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Direct cross-section from mono-photon search (+ knowledge of $M_{\widetilde{e}_R}$)? Other invisible channels ($\tilde{\nu}$ and $\tilde{\chi}_2^0 \to \nu \tilde{\nu}$): do it below threshold for these.
 - BR:s in cascades when direct decay to SM+ $\tilde{\chi}_1^{\gamma}$ is substantial, ance kinematics of rest are known. Best one in STC: $\tilde{\nu}_{\tau} \to W\tilde{\tau}$, since $\tilde{\nu}_{\tau} \to \nu \tilde{\chi}_1^0$ is given of the Zino-ness of $\tilde{\chi}_1^0$, which is related to the Bino-ness by θ_W !
 - is percent-level measurement possible?

- $\theta_{\tilde{\tau}}$: Several options:
 - Cross-section, once $M_{\tilde{\tau}}$ (and E_{CM}) is known only depends on $\theta_{\tilde{\tau}}$.
 - Cross-section difference for RL and LR: For clean signal for LR: lower E_{CM}.
 - If all sleptons are equal at the GUT scale: difference between $M_{\tilde{e}_R}$ and $M_{\tilde{\tau}}$ directly gives the mixing.
 - Cross-section of $\tilde{\tau}_1 \tilde{\tau}_2$ production useful, but very low rate.
 - Percent-level measurement likely.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Direct cross-section from mono-photon search (+ knowledge of $M_{\widetilde{e}_R}$)? Other invisible channels ($\bar{\nu}$ and $\bar{\chi}_2^0 \to \nu \bar{\nu}$): do it below threshold for these.
 - * BH:s in cascades when direct decay to SM+ χ_1° is substantial, and kinematics of rest are known. Best one in STC: $\tilde{\nu}_{\tau} \to W\tilde{\tau}$, since $\tilde{\nu}_{\tau} \to \nu \tilde{\chi}_1^0$ is given of the Zino-ness of $\tilde{\chi}_1^0$, which is related to the Bino-ness by θ_W !
 - Is percent lever measurement possible?

- $\theta_{\tilde{\tau}}$: Several options:
 - Cross-section, once $M_{\tilde{\tau}}$ (and E_{CM}) is known only depends on $\theta_{\tilde{\tau}}$.
 - Cross-section difference for RL and LR: For clean signal for LR: lower E_{CM}.
 - If all sleptons are equal at the GUT scale: difference between M_{ẽR} and M_τ directly gives the mixing.
 - Cross-section of $\tilde{\tau}_1 \tilde{\tau}_2$ production useful, but very low rate.
 - Percent-level measurement likely.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Direct cross-section from mono-photon search (+ knowledge of $M_{\widetilde{e}_R}$)? Other invisible channels ($\tilde{\nu}$ and $\tilde{\chi}_2^0 \to \nu \tilde{\nu}$): do it below threshold for these.
 - BR:s in cascades when direct decay to SM+ $\tilde{\chi}_1^0$ is substantial, and kinematics of rest are known. Best one in STC: $\tilde{\nu}_{\tau} \to W\tilde{\tau}$, since $\tilde{\nu}_{\tau} \to \nu \tilde{\chi}_1^0$ is given of the Zino-ness of $\tilde{\chi}_1^0$, which is related to the Bino-ness by θ_W !
 - Is percent-level measurement possible?

- $\theta_{\tilde{\tau}}$: Several options:
 - Cross-section, once $M_{\tilde{\tau}}$ (and E_{CM}) is known only depends on $\theta_{\tilde{\tau}}$.
 - Cross-section difference for RL and LR: For clean signal for LR: lower E_{CM}.
 - If all sleptons are equal at the GUT scale: difference between M_{ẽR} and M_τ directly gives the mixing.
 - Cross-section of $\tilde{\tau}_1 \tilde{\tau}_2$ production useful, but very low rate.
 - Percent-level measurement likely.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Direct cross-section from mono-photon search (+ knowledge of $M_{\widetilde{e}_R}$)? Other invisible channels ($\tilde{\nu}$ and $\tilde{\chi}_2^0 \to \nu \tilde{\nu}$): do it below threshold for these.
 - BR:s in cascades when direct decay to SM+ $\tilde{\chi}_1^0$ is substantial, and kinematics of rest are known. Best one in STC: $\tilde{\nu}_{\tau} \to W\tilde{\tau}$, since $\tilde{\nu}_{\tau} \to \nu \tilde{\chi}_1^0$ is given of the Zino-ness of $\tilde{\chi}_1^0$, which is related to the Bino-ness by θ_W !
 - Is percent-level measurement possible?

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Most likely LHC will discover it in the next few years, if it is there.
- In such models a rich spectrum reachable by the ILC, ILC will be able to corroborate on LHC discovery.
- In particular, will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to PLANKs CMB results.

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Most likely LHC will discover it in the next few years, if it is there.
- In such models a rich spectrum reachable by the ILC, ILC will be able to corroborate on LHC discovery.
- In particular, will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to PLANKs CMB results.

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Most likely LHC will discover it in the next few years, if it is there.
- In such models a rich spectrum reachable by the ILC, ILC will be able to corroborate on LHC discovery.
- In particular, will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to PLANKs CMB results.

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Most likely LHC will discover it in the next few years, if it is there.
- In such models a rich spectrum reachable by the ILC, ILC will be able to corroborate on LHC discovery.
- In particular, will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to PLANKs CMB results.

Thank You!

BACKUP

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, o γ : only $\tilde{\chi}_2^0$.
- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\widetilde{\chi}_1^0}, M_{\widetilde{\chi}_1^\pm})$ to \sim 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\widetilde{\chi}_1^0}, M_{\widetilde{\chi}_1^\pm})$ to \sim 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to \sim 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to \sim 100 MeV.

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- ullet μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

- STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:
 - $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau} \tilde{\tau} > \tilde{\ell} \tilde{\ell} > \tilde{t} \tilde{t} > \tilde{b} \tilde{b} > \tilde{q} \tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g} \tilde{g}$ anging from 1.5 pb to 1 fb. $M_{\tilde{t}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10
 - ightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 imes smaller in STC10 wrt STC8.
 - $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (Z, W or h).
 - For χ^* , the rest is either only bosons, or "nothing" (ie. neutrinos) • For χ^\pm the rest is other leptons.
 - The τ :s mostly come from $\tilde{\tau}_1 \to \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
 - \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^\pm$ (20%)
 - \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ ($\sim 10\%$).
 - The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:
 - $\tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{\pm} > \tilde{\chi}_{k}^{\pm}\tilde{\chi}_{l}^{\pm} > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{0} > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{t}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10
 - ightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 imes smaller in STC10 wrt STC8.
 - $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (Z, W or h).
 - For χ̄^v, the rest is either only bosons, or "nothing" (ie. neutrinos).
 For ȳ̄[±] the rest is other lectons.
 - The τ :s mostly come from $\tilde{\tau}_1 \to \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
 - \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^\pm$ (20%)
 - \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ ($\sim 10\%$).
 - The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:
 - $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau} \tilde{\tau} > \tilde{\ell} \tilde{\ell} > \tilde{t} \tilde{t} > \tilde{b} \tilde{b} > \tilde{q} \tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g} \tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{t}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10
 - \rightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 \times smaller in STC10 wrt STC8.
 - $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (Z, W or h).
 - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
 - The τ :s mostly come from $\tilde{\tau}_1 \to \tau \tilde{\chi}^0_0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
 - \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^\pm$ (20%)
 - \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ ($\sim 10\%$).
 - The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:
 - $\tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{\pm} > \tilde{\chi}_{k}^{\pm}\tilde{\chi}_{l}^{\pm} > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{0} > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{t}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10
 - \rightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 \times smaller in STC10 wrt STC8.
 - $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (Z, W or h).
 - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
 - The τ :s mostly come from $\tilde{\tau}_1 \to \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
 - \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^\pm$ (20%)
 - \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ ($\sim 10\%$).
 - The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:
 - $\tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{\pm} > \tilde{\chi}_{k}^{\pm}\tilde{\chi}_{l}^{\pm} > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{0} > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{t}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10
 - \rightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 \times smaller in STC10 wrt STC8.
 - $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (Z, W or h).
 - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
 - The τ :s mostly come from $\tilde{\tau}_1 \to \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
 - \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^\pm$ (20%)
 - \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ ($\sim 10\%$).
 - The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:
 - $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau} \tilde{\tau} > \tilde{\ell} \tilde{\ell} > \tilde{t} \tilde{t} > \tilde{b} \tilde{b} > \tilde{q} \tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g} \tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{t}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10
 - \rightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 \times smaller in STC10 wrt STC8.
 - $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (Z, W or h).
 - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
 - The τ :s mostly come from $\tilde{\tau}_1 \to \tau \tilde{\chi}^0_0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
 - \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^\pm$ (20%)
 - \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ ($\sim 10\%$).
 - The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

 STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).

⇒ LHC expectations

- Despite the high cross-section, the low amount of missing E_T and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing E_T will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.
 - The right-handed gen Fand ∠ squarks almost always decay directly to quark+LSP.

 STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).

⇒ LHC expectations

- Despite the high cross-section, the low amount of missing E_T and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing E_T will make firstand second-generation squark production easy to detect. However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise
 - The right-handed gen Fand ∠ squarks almost always decay directly. to quark+LSP.

 STC8 and STC10 studied by I. Melee-Pullmans group at DEWY with fastsim (Delphes).

⇒ LHC expectations

- Despite the high cross-section, the low amount of missing E_T and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing E_T will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.
 - The right-handed genT and ∠ squarks aimost always decay directly to quark+LSP.

Observables:

Observable	Gives	If
Edges (or average and		not too far from
width)	Masses	threshold
Shape of spectrum	Spin	
Angular distributions	Mass, Spin	
Invariant mass distributions		
from full reconstruction	Mass	cascade decays
Angular distributions from		
full reconstruction	Spin, CP,	masses known
Un-polarised Cross-section		
in continuum	Mass, coupling	
Polarised Cross-section	Mass, coupling,	
in continuum	mixing	
Decay product polarisation	Mixing	$\tilde{ au}$ decays
Threshold-scan	Mass(es), Spin	