# Measuring the CP state of tau pairs from Higgs decay at ILC in ILD

#### updates since ECFA-LC workshop @Santander

ILD analysis meeting, 27 July 2016

**Daniel Jeans** 



# **Motivation**

Higgs mass eigenstate may not be CP eigenstate

$$h_m = \cos \psi_{CP} h^{CPeven} + \sin \psi_{CP} A^{CPodd}$$

coupling of Higgs to fermions may violate CP

$$\mathcal{L} \sim g f$$
 ( cos  $\psi_{CP}$  + i  $\gamma^5$  sin  $\psi_{CP}$  ) f H

CP conserving coupling  $\psi_{CP}=0$ maximally violating  $\psi_{CP}=\pi/2$  CP of fermion pair reflected in correlation between spins

fermion with significant BR from Higgs

how to observe fermion spin? look at decay product distribution → unstable fermion

final state affected by QCD will probably have spin correlations largely washed out

that leaves tau leptons or top quarks → decay too fast for QCD to act

This analysis: taus

### spin information from tau decays

tau spin **s** can be partially reconstructed from decay product distribution  $d\Gamma (\tau \rightarrow X) \sim (1 + a h (X) \cdot s)$ 

> h (X) is the polarimeter vector encodes spin-dependent part of tau decay depends on momenta of final state particles X

easy to calculate for  $\tau^{\pm} \rightarrow \pi^{\pm} \nu$  (~11% of taus)  $\pi^{\pm} \pi^{0} \nu$  (~26%)

to do this completely,

need to reconstruct tau lepton momenta use my "impact parameter" method arXiv:1507.01700 works in Higgs-strahlung events, with Z → visible 6 unknowns: two neutrino 3-momenta 6 constraints: 2 impact parameter, 2 tau mass, 2 from event pT

# <u>CP from polarimeters</u> : taus from spin 0 parent



 $dN/(d\cos\theta^+ d\cos\theta^- d\phi^+ d\phi^-) \propto 1 + \cos\theta^+ \cos\theta^- - \sin\theta^+ \sin\theta^- \cos(\Delta\phi - 2\psi_{\rm CH})$ 

 $\theta$ ,  $\phi$  are direction of polarimeter w.r.t. tau- momentum in tau rest frames  $\Delta \phi = \phi^+ - \phi^- \psi_{CP}$  is the CP mixing angle we want to measure

 $\Delta \phi$  distribution sensitive to  $\psi_{CP}$ 

events with large (sin  $\theta^+$  sin  $\theta^-$ ) are more strongly affected by  $\psi_{CP}$ 

# distributions of $\Delta \phi$ at different $\psi_{CP}$ signal only, MC level



 $\Delta \phi$  distribution shifts by  $2\psi_{CP}$ 

## Full simulation & reconstruction

```
Whizard 2.2.8

250 GeV, polarised beams, CIRCE2 beam-strahlung, ISR

e+e- \rightarrow f+f-\tau+\tau- (\tau+\tau- from 125 GeV Higgs)

e+e- \rightarrow f+f-\tau+\tau- (\tau+\tau- not from Higgs)

f=e, \mu, u, d, s, c, b (some generator level cuts, particularly for e+e-\tau+\tau-)
```

#### Pythia v8.212 for hadronisation, FSR, tau decays

Mokka simulation: ILD model ILD\_o1\_v05

standard Marlin/ILDConfig reconstruction [ilcsoft v01-17-09] background overlay standard Pandora steering (with recent photon reco)

scale everything to H20:

2 ab<sup>-1</sup> @ 250 GeV in various polarisation combinations

# **Update since Santander**

FSR issues:

- previously used PYTHIA for FSR, TAUOLA for tau decays
- one of my samples (ZH, Z-> mu mu) had no FSR from taus  $\rightarrow$  too optimistic
- when FSR was applied to taus in the other samples, problem with my interface between PYTHIA and TAUOLA any FSR from tau removed spin correlations (tau no longer tagged as coming from Higgs decay) → too pessimistic

now do everything in PYTHIA correlated tau decays included in PYTHIA since v8.150

now also include Z decays to cc, bb

## $\Delta \phi$ vs. sin $\theta^+$ sin $\theta^$ signal only, MC truth





9

### **Update since Santander**

previously integrated over sin  $\theta^+$  sin  $\theta^-$ 

now slice events according to sin  $\theta^+$  sin  $\theta^-$ 

 $\rightarrow$  improves statistical precision

previously quoted error on phase of  $\Delta \phi$  distribution

 $\rightarrow$  this corresponds to  $2\psi_{CP}$ 

now quote error on  $\psi_{CP}$ 

- $\rightarrow$  "gain" a factor 2
- $\rightarrow$  consistent with other studies

#### resolution on the two important observables

MC rec gunionSinSinDeltaPhi\_tauana\_ttee\_250GeV\_LR\_addH\_0\_sigsigSel3 MC rec gunionSinSinDeltaPhi tauana ttee 250GeV LR addH 0 sigsigSel3 Z→ee reconstructed, 0.2 selected mu mu 0.2 uds events CC 0.15 0.1 0.1 0.05 0.5 0 0.5  $\Delta \phi$  (reconstructed – true) [rad]  $\sin \theta^+ \sin \theta^-$  (reco – true)

> resolution slightly better for leptonic Z decays no bias in Δφ for hadronic Z decays, small bias in sin θ<sup>+</sup> sin θ<sup>-</sup> not so important, used only for binning of events

#### how finely do we have to slice in sin $\theta^+$ sin $\theta^-$ ?



5 slices looks sufficient: no significant gain from slicing more finely gives ~ same result as full 2-d fit.

# **Event selection**

done in 3 channels according to Z decay: ee,  $\mu\mu$ , jets

simple cut-based selection

# **Update since Santander**

several tweaks to event reconstruction & selection

latest results:

| H20: 2 $ab^{-1}$ @ 250 GeV           | $Z \to e^+ e^-$ | $Z 	o \mu^+ \mu^-$ | $Z \to q q$ |
|--------------------------------------|-----------------|--------------------|-------------|
| signal selection efficiency          | 33~%            | 43 %               | 22~%        |
| selected signal events               | 51              | 63                 | 651         |
| selected Higgs background events     | 17              | 25                 | 198         |
| selected non–Higgs background events | 25              | 22                 | 442         |
| reconstructed signal contrast        | 0.47            | 0.46               | 0.37        |

#### reconstruction and selection efficiency

dependence on true value of our two observables



basically flat  $\rightarrow$  unbiased selection

# Fitting procedure: bias check

Fit large MC signal samples generated with different  $\psi_{\text{CP}}$  compare input and extracted  $\psi_{\text{CP}}$ 



## Signal + background, scaled to 2/ab (H20 scenario)



#### <u>Results of 10k toy MC experiments</u> simultaneous fit to all channels and sub-samples



# Sensitivity on $\Psi_{CP}$

after full H20 @ 250 GeV ( 2 / ab ) (~20 years)  $\rightarrow$  77 mrad (4.4 degrees) assuming SM Higgs-strahlung xsec (  $\sigma_{z_H}$ )

before lumi upgrade (after ~8 years running) 0.5 / ab @ 250 GeV → 152 mrad

non-SM CP properties may reduce  $\sigma_{_{7H}}$ 

- $\sigma_{_{ZH}}(SM) \rightarrow 77 \text{ mrad} \qquad \text{full H20}$
- $\sigma_{_{ZH}}$  10%  $_{}$   $\rightarrow$  83 mrad
- $\sigma_{_{ZH}}$  25%  $\rightarrow$  93 mrad
- $\sigma_{_{ZH}}$  50%  $\rightarrow$  124 mrad

full H20, 100% selection efficiency, perfect reconstruction, no background  $\rightarrow$  17 mrad

# <u>Summary</u>

since Santander:

```
a few bugs fixed (most important: FSR)
```

```
quote error on \psi_{CP} (not 2 \psi_{CP})
```

several tweaks to reconstruction selection

include  $Z \rightarrow cc$ , bb decays

improvement to fitting procedure slicing into sub-samples according to sensitivity simultaneous likelihood fit over all sub-samples

paper: first draft completed

ILD review procedure?

# backup

# selection: leptonic Z decay

electron or muon

charged hadron

photon

>=1 leptonic Z decay candidate → particle ID

>=2 additional charged hadrons → tau seeds

associate photons  $\rightarrow$  pi0 (use constrained fit)

→ tau jets, if m\_tau not exceeded associate unpaired photons to nearest tau jets, if m\_tau not exceeded

.. . ... ....

veto events with significant additional activity-

select  $\tau^{\pm} \rightarrow \pi^{\pm} \nu$  and  $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu$  decays  $\rightarrow$  photon reconstruction

fully reconstruct tau momenta use impact parameters of tau products balance event p<sub>⊤</sub> impose tau mass → impact parameters ; momentum of Z

cut on tau-tau mass, recoil mass, tau energy

# selection: hadronic Z decay

highest energy pair of oppositely charged, solated-from-other-charged, PFOs

add nearby photons ( $\rightarrow$  pi0)  $\rightarrow$  tau if m\_tau not exceeded

select  $\tau^{\pm} \rightarrow \pi^{\pm} \nu$  and  $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu$  decays  $\rightarrow$  photon reconstruction

rest of event  $\rightarrow$  "Z" require mass consistent with mZ

fully reconstruct tau momenta

- → IP reconstruction
- → impact parameters
- $\rightarrow$  momentum of Z  $\rightarrow$  JER

cut on tau energy, tau-tau mass, recoil mass

µµTT channel some toy MC experiments

# illustrative



































# expected statistical uncertainties on CP mixing angle $2\psi [\psi = 0 : CP even, 2\psi = pi : CP odd]$

| channel                        | еетт                                |                          | μμττ                      |                          | qqττ                      |                          |
|--------------------------------|-------------------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|
| polarisation                   | (-0.8, +0.3)<br>1350 fb-1           | (+0.8, -0.3)<br>450 fb-1 | (-0.8, +0.3)<br>1350 fb-1 | (+0.8, -0.3)<br>450 fb-1 | (-0.8, +0.3)<br>1350 fb-1 | (+0.8, -0.3)<br>450 fb-1 |
| signal<br>efficiency           | 31%                                 | 30%                      | 50%                       | 51%                      | 16%                       | 15%                      |
| # selected signal events       | 36.3                                | 7.9                      | 56.7                      | 12.9                     | 221                       | 48                       |
| signal<br>contrast             | 0.28                                | 0.28                     | 0.48                      | 0.50                     | 0.28                      | 0.25                     |
| Signal /<br>Background         | 1.0                                 | 1.2                      | 2.0                       | 2.2                      | 0.74                      | 0.92                     |
| mean err on $2\psi$ [rad]      | 0.9                                 | 1.4                      | 0.5                       | 0.9                      | 0.4                       | 0.8                      |
| mean error<br>on $2\psi$ [rad] | 0.8                                 |                          | 0.5                       |                          | 0.4                       |                          |
| mean error<br>on <del>2ψ</del> | 0.3 rad ~ $\pi/10$ rad ~ 17 degrees |                          |                           |                          |                           |                          |

[ n.b. people usually quote error on  $\psi$  ]

event reconstruction depends largely on:

tau decay mode identification  $\rightarrow$  pattern recognition in ECAL

impact parameter resolution → vertex detector

jet energy resolution

#### example cut table: LR signal in Z $\rightarrow$ ee channel

sample tauana\_ttee\_250GeV\_LR\_addH\_0\_sigsig : xsec 0.00014418 tree entries : 9863

| selection variable                                                                                                                         | EVENT COUNT                                          | EFFICIENCY                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ALL<br>GENERATORCUT<br>>=4 chg PFOs<br>>=1 Z candidate<br>no forward electron in Z<br>no muon PID in tau decay<br>no elec PID in tau decay | 9863<br>9863<br>9167<br>8105<br>7425<br>7320<br>6532 | EFFICIENCY<br>100 %<br>100<br>92.9433<br>82.1758<br>75.2814<br>74.2168<br>66.2273<br>64.7672 |
| FINALPRESEL<br>ZMASS<br>EXTRA ACTIVITY                                                                                                     | 6388<br>6388<br>6090<br>5586                         | 64.7673<br>64.7673<br>61.7459<br>56.6359                                                     |
| TAUJETS – tau → πν or ρν<br>TAUTAUFIT – successful fit<br>TAU ENERGY<br>TAUTAU MASS<br>RECOIL MASS                                         | 4463<br>3991<br>3707<br>3356<br>3315                 | 45.2499<br>40.4644<br>37.5849<br>34.0262<br>33.6105                                          |