Updates of $h \rightarrow \mu^+ \mu^$ at 500 GeV ILC

ILD Analysis/Software Meeting (2016/July/27)

Quick introduction

• This process is selected as one of the physics benchmark process of ILD optimization.

we have agreed on

process

H->cc

g performance of new detector models will be evaluated eventually based on physics performance

physics

BR

-

detector performance

c-tag, JER

high P tracking

τ recon., PID, track separation

JES, JER, b-tag

JER

JES, JER

b-tag, jet charge

low P tracking, PID

Photon ER & ES, Hermiticity

Ecm

any

500 GeV

250 GeV

500 GeV

250 GeV

500 GeV

500 GeV

500 GeV

500 GeV

		π—>μμ	DK
		Η—>ττ	BR, CP
		H—>bb	M _H , BR
		H—>invisible Z—>qq	Higgs Porta
		evW—>evqq	M _w , TGC
		tt-bar—>6-jet	top coupling,
talk by J. Tian		$\chi_1^+\chi_1^-, \chi_2^0\chi_1^0$ near degenerated	natural SUS
ILD software and optimization worksho	op dc	γXX	WIMPs
(2016/Feb./22-26)			**11:.:.

AFB

Signal diagram, Expected # events

signal:
$$e^+e^- \rightarrow \nu \bar{\nu} h, h \rightarrow \mu^+\mu^-$$

BR($h \rightarrow \mu^+ \mu^-$) ~ 2.2*10⁻⁴ expected # events: ~60 with 1600 fb⁻¹, $P(e^-, e^+) = (-0.8, +0.3)$ ("H20" scenario)

Updates from ECFALC2016

- SGV sample ---> fully-simulated sample
 - generated with DBD configuration using ILCDirac
 - analyzed with ILCSoft v01-17-09
 - many thanks to Akiya
- Apply FSR correction
- Re-weight using $\sigma(M_{\mu^+\mu^-})$ (error of muon pair mass): work in progress

Muon reconstruction for signal

- $E_{charged}$ > 15 GeV
- $E_{ECAL}/(E_{ECAL}+E_{HCAL}) < 0.6$ (frac)
- $(E_{ECAL}+E_{HCAL})/|P_{track}| < 0.4$ (EbyP)
- $E_{yoke} > 1 \text{ GeV}$
- $|d_0/sigma(d_0)| < 5 (d_0sig)$

Muon reconstruction for signal

one μ^+ & one μ^- = 94.6% FSR recovery φ_{μ}^{γ}

recover range: $\cos \theta > 0.99$ add 4-mom. of neutral particle(s) to muon

25000

20000

15000

10000

5000

MC in 124 < $M_{\mu^+\mu^-}$ < 126 GeV (events only one μ^+ & one μ^-) without recovery: 12676 with recovery: 13410 ~5.8% improved

N^{track}_{E > 15 GeV}: avoid overlay effects

500 GeV 1600 fb ⁻¹ left-handed	$ u u h $ $ h ightarrow \mu \mu $	qqh & ℓℓh h → μμ	ffh h → μμ	2 f	4 f	5f	aa_4f
No cut	57.53	31.13	4.116*10 ⁵	4.225*10 ⁷	3.808*10 ⁷	2.209*10 ⁵	3.356*10 ⁵
$\# \ \mu^\pm$	54.41	27.46	6818.81	2.025*10 ⁶	1.124*10 ⁶	5979.80	1.109*10 ⁴
# N ^{track}	54.41	18.92	4920.84	2.015*10 ⁶	1.069*10 ⁶	5592.42	1.074*10 ⁴
$M_{\mu\mu}$	44.70	15.46	3.80	3782.87	2894.26	31.63	24.96

Cut-based analysis: results

500 GeV 1600 fb ⁻¹ left-handed	νν h $h ightarrow \mu \mu$	qqh & llh h → μμ	ffh h → μμ	2 f	4 f	5f	aa_4f
precuts	44.70	15.46	3.80	3782.87	2894.26	31.63	24.96
E _{vis}	44.26	0.71	0	2454.88	1721.20	24.10	18.66
Pt	40.95	0.15	0	87.20	1129.30	22.22	18.66
thrust	32.88	0.15	0	41.19	283.65	13.46	9.45
$ heta_{ ext{thrust}}$	31.86	0.144	0	41.19	223.35	13.46	9.45
$ heta_{ m miss}$	31.77	0.144	0	41.19	203.26	9.24	9.45

$$\frac{S}{\sqrt{S+B}} = 1.85$$
$$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = 54\%$$

Some weight (= 1600/generated lumi.) for background is high! (~20)

Comparison with SGV

- performed similar analysis using SGV signal samples, and optimized (see backup for detail)
 - FSR correction included (not included in my talk at ECFALC2016)
- obtained precision = 34%
 - $N^{track}_{E > 15 \text{ GeV}}$ cut is changed to N_{track}
 - N_{track} is powerful separation tool in SGV case but not in full case, because of $\gamma\gamma \rightarrow$ hadrons overlay.

Summary & Next Step

- Analyzed SGV case and full case both
 - precision = 54% in full case
 - relatively ~40% worse than SGV case, N_{track} is no longer powerful
- Event-by-event re-weight using $\sigma(M_{\mu^+\mu^-})$
 - sig.: well measured, small σ in M_h region
 - bkg.: badly measured, larger σ than signal
 - re-weighting by $1/\sigma$ would be useful

BACKUP SLIDES

Numbers of $h \rightarrow \mu^+ \mu^-$

We only have extrapolated numbers for 500 GeV ILC. ref.: ILC operating scenario (arXiv:1506.07830 [hep-ex])

~40% expected

MC Samples & Analysis Setting (SGV)

- Signal
 - STDHEP files were already generated
 - limited fully-simulated samples, we used SGV-simulated samples instead
 - SGV can be used many different types of detector configurations
 ---> good tool for detector optimization study
- Background
 - DBD samples
 - 2f, 4f (except WW/ZZ-hadronic), 5f, aa_4f, higgs_ffh
- ILCSOFT: v01-17-09

Muon Reconstruction (SGV)

Precuts (SGV)
one
$$\mu^+$$
 & one μ^- &
 μ^+ & one μ^- &
 μ^+ & one μ^- &
 μ^+ & one μ^- &
 $124 < M_{\mu\mu} < 126$ GeV
 μ^+ $\mu^ \mu^ \mu$

500 GeV 1600 fb ⁻¹ left-handed	$egin{array}{c} m{ u}m{ u}m{h} ightarrow m{\mu}m{\mu} \end{array}$	qqh & ℓℓh h → μμ	ffh h → μμ	2 f	4f	5f	aa_4f
No cut	60.04	20.20	4.119*10 ⁵	4.273*10 ⁷	3.802*10 ⁷	2.208*10 ⁵	3.356*105
# μ^\pm	58.93	18.25	6669.55	1.998*10 ⁶	1.125*10 ⁶	5891.06	1.095*10 ⁴
# N ^{track}	58.93	4.47	528.13	1.135*10 ⁶	4.901*10 ⁵	1523.30	2725.73
$M_{\mu\mu}$	50.71	3.86	0	2135.56	1133.50	12.92	9.45

Cut (SGV)

Cut-based analysis (SGV)

500 GeV 1600 fb ⁻¹ left-handed	$ u u h $ $ h ightarrow \mu \mu $	qqh & llh h → μμ	ffh h → μμ	2f	4 f	5f	aa_4f
precuts	50.71	3.86	0	2135.56	1133.50	12.92	9.45
E _{vis}	50.19	0.08	0	1354.20	845.73	1.88	6.30
Pt	35.73	0.05	0	44.81	381.91	0	3.15
thrust	27.61	0.05	0	0	60.26	0	0

$$\frac{S}{\sqrt{S+B}} = 2.94$$
$$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = 34\%$$

Some weight (= 1600/generated lumi.)
for background is high! (~20)

$\sigma(M_{\mu^+\mu^-})$ Covariance Matrix in Momenta Space

- ref.: C. Calancha's talk
 - <u>http://agenda.linearcollider.org/event/6315/contribution/1/material/sli</u> <u>des/0.pdf</u>
 - <u>http://agenda.linearcollider.org/event/6343/contribution/2/material/sli</u> <u>des/0.pdf</u>
 - <u>http://agenda.linearcollider.org/event/6361/contribution/10/material/slides/0.pdf</u>
 - <u>http://agenda.linearcollider.org/event/6372/contribution/4/material/sli</u> des/0.pdf

For Further Improvement: $\sigma(M_{\mu^+\mu^-})$

error of measured
$$M_{\mu^{+}\mu^{-}}$$
:
 $\sigma^{2}(M_{\mu^{+}\mu^{-}}) = \frac{1}{M_{\mu^{+}\mu^{-}}^{2}} [P_{1}^{T}\Sigma_{2}P_{1} + P_{2}^{T}\Sigma_{1}P_{2}]$

 $P: a \text{ matrix filled with} \qquad \Sigma_i: \text{ covariance matrix in momenta space of muon } i$ 4-momentum of muon $P_i: \begin{pmatrix} E_i \\ p_{xi} \\ p_{yi} \\ p_{zi} \end{pmatrix}$ $P_i: \begin{pmatrix} E_i \\ p_{xi} \\ p_{yi} \\ p_{zi} \end{pmatrix}$ $\Sigma_i \equiv \begin{pmatrix} \text{cov}[E, E] & \text{cov}[E, p_x] & \text{cov}[E, p_y] & \text{cov}[E, p_z] \\ \text{cov}[E, p_x] & \text{cov}[p_x, p_x] & \text{cov}[p_x, p_y] & \text{cov}[p_x, p_z] \\ \text{cov}[E, p_y] & \text{cov}[p_x, p_y] & \text{cov}[p_y, p_y] & \text{cov}[p_y, p_z] \\ \text{cov}[E, p_z] & \text{cov}[p_x, p_z] & \text{cov}[p_y, p_z] & \text{cov}[p_y, p_z] \\ \text{cov}[E, p_z] & \text{cov}[p_x, p_z] & \text{cov}[p_y, p_z] & \text{cov}[p_y, p_z] \end{pmatrix}$

 $h \rightarrow \mu^+ \mu^-$: small σ when $M_{\mu^+ \mu^-} \sim M_h$ background: no peak in small σ when $M_{\mu^+ \mu^-} \sim M_h$

Pull distribution ($\nu\nu h, h \rightarrow \mu^+\mu^-$)

after precuts Gaussian fit: [-2,2] sigma = 1.18 +- 0.03

- first analysis-level application of FourMomentumCovMat
- width of pull distribution looks fine
- tails due to FSR

 $M_{\mu^{+}\mu^{-}}$ v.s. $\sigma(M_{\mu^{+}\mu^{-}})$ $h \rightarrow \mu^+ \mu^-$ samples

%# of MC events after precuts, not luminosity weighted

background

- hot spot in small $\sigma(M_{\mu^+\mu^-})$ around $M_{\mu^+\mu^-} \simeq M_h$ in $h \rightarrow \mu^+\mu^-$ samples, as expected
- peak around M_z with larger $\sigma(M_{\mu^+\mu^-})$ in background (probably going forward) and no peak in signal region

Zoom: $M_{\mu^{+}\mu^{-}}$ v.s. $\sigma(M_{\mu^{+}\mu^{-}})$

of MC events after precuts, not luminosity weighted zoom in M_h region

