Status of $h \rightarrow \mu^+ \mu^$ at 500 GeV ILC

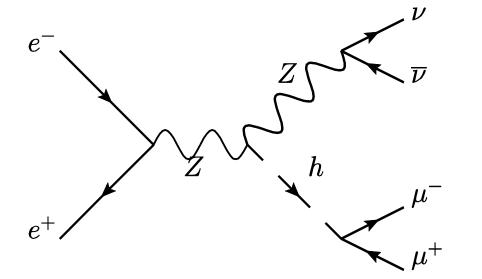
Shin-ichi Kawada (DESY)

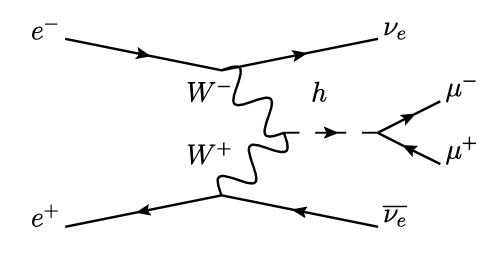
Higgs/EW Group Meeting (2016/Aug./31)

Quick introduction

This process is selected as one of the physics benchmark process of ILD optimization.

we have agreed on


performance of new detector models will be evaluated eventually based on physics performance


process	physics	detector performance	Ecm	
H—>cc	BR	c-tag, JER	any	
Н—>µµ	BR	high P tracking	500 GeV	
Η—>ττ	BR, CP	τ recon., PID, track separation	250 GeV	
H—>bb	M _H , BR	JES, JER, b-tag	500 Ge	
H—>invisible Z—>qq	Higgs Portal	JER	250 GeV	
evW—>evqq	M _w , TGC	JES, JER	500 GeV	
tt-bar—>6-jet	top coupling, AFB	b-tag, jet charge	500 GeV	
$\chi_1^+\chi_1^-, \chi_2^0\chi_1^0$ near degenerated	natural SUSY	low P tracking, PID	500 GeV	
γXX	WIMPs	Photon ER & ES, Hermiticity	500 GeV	

**this is just a minimum list

Signal

signal:
$$e^+e^- \rightarrow \nu \bar{\nu} h, h \rightarrow \mu^+\mu^-$$

BR($h \rightarrow \mu^{+}\mu^{-}$) ~ 2.2*10⁻⁴ expected # events: ~60 with 1600 fb⁻¹, $P(e^{-}, e^{+}) = (-0.8, +0.3)$ ("H20" scenario) (other beam pol. cases are hopeless)

Current analysis setting

- ILCSOFT: v01-17-09
- MC samples: DBD + additional, DBD configuration, most of them are fully-simulated
 - Signal: ffh_mumu
 - Background: 2f, 3f, 4f, 5f, aa_2f, aa_4f, higgs_ffh + additional
 - MC production information of blue colors can be found at: https://confluence.desy.de/display/ILD/Monte+Carlo+Production
 - Additional 4f_ZZ_leptonic is not included

Analysis

- Everything based on cut-based analysis
 - Muon reconstruction
 - Precuts: only selecting signal signature
 - Optimization: maximize signal significance $\frac{S}{\sqrt{S+B}}$
 - See backup for details

Results

					<u> </u>		-		
	$\nu \nu h$	$qqh+\ell\ell h$	ffh						
	h ightarrow u u	h ightarrow u u	$h \rightarrow ext{other}$	2f	$\gamma\gamma ightarrow 2 { m f}$	3f	4f	$\gamma\gamma ightarrow4{ m f}$	5f
No cut	57.53	31.13	4.116×10^{5}	4.224×10^7	4.283×10^{9}	4.269×10^{8}	4.592×10^{7}	3.356×10^{5}	2.209×10^{5}
$\# \mu^{\pm}$	54.39	27.39	6895.00	2.071×10^{6}	62.62	299.75	1.209×10^{6}	1.131×10^{4}	6125.00
$\# N_{P_t > 5 \text{GeV}}^{\text{track}}$	54.27	4.89	1425.76	2.014×10^6	31.28	0	9.826×10^{5}	9544.48	4411.00
$M_{\mu\mu}$	44.61	3.94	0	3741.41	0	0	2407.24	21.81	31.63
Evis	43.88	0.17	0	2390.68	0	0	1529.57	18.66	24.10
P_t	25.97	0.07	0	64.20	0	0	457.80	6.07	3.68
thrust	20.48	0.05	0	20.60	0	0	118.92	0	0
θ_{thrust}	19.84	0.05	0	20.60	0	0	102.07	0	0

Table 2: The cut statistics using fully-simulated samples.

I obtained $N_{\text{sig}} = 19.84$ and $N_{\text{bkg}} = 122.72$. The significance is $\frac{19.84}{\sqrt{19.84 + 122.72}} = 1.66$, and the precision is $\frac{\Delta(\sigma \times \text{BR})}{(\sigma \times \text{BR})} = 60\%$.

Major background: $vv\mu\mu$ and $vv\tau\tau$ from 4f (as expected), mostly from WW Now working on more suppression...

Comparison

Ref.: ILC operating scenario (arXiv:1506.07830 [hep-ex])

$\int \mathscr{L} dt$ at \sqrt{s}	$250 {\rm fb}^{-1}$ at 2	250 GeV	$330{\rm fb}^{-1}$ at 35	50 GeV	$500 {\rm fb^{-1}}$ at $500 {\rm GeV}$		
$P(e^-,e^+)$	(-80%,+30%)						
production	Zh	$v\bar{v}h$	Zh	$v\bar{v}h$	Zh	$v\bar{v}h$	tīh
decay	$\Delta(\boldsymbol{\sigma} \cdot \boldsymbol{BR})/(\boldsymbol{\sigma} \cdot \boldsymbol{BR})$						
$h ightarrow \mu^+ \mu^-$ [45]	72%	-	76%	140%	88%	72%	-

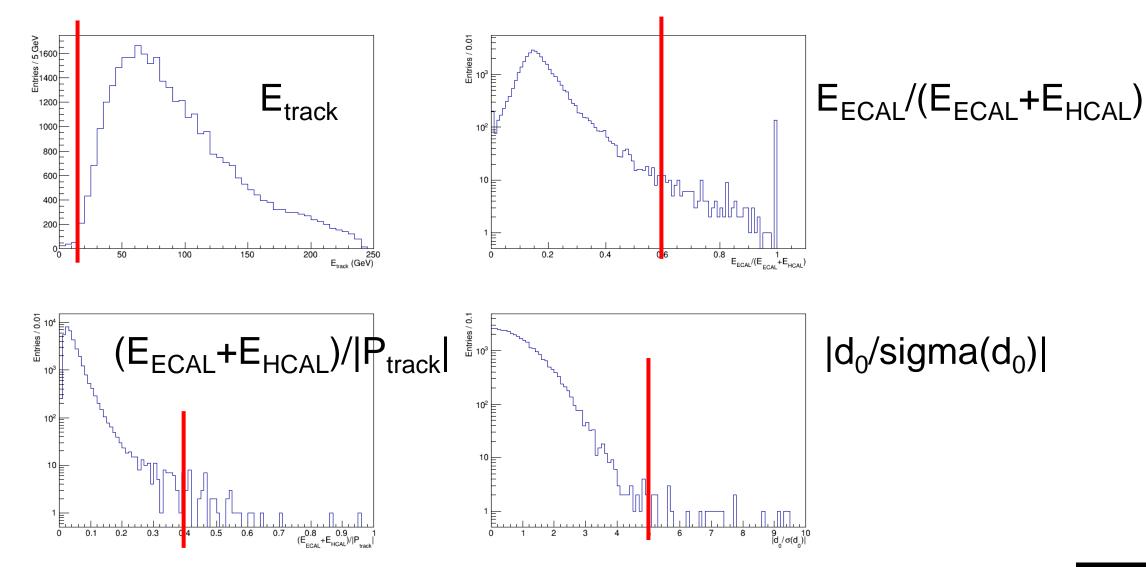
[45] C. Calancha, private communication.

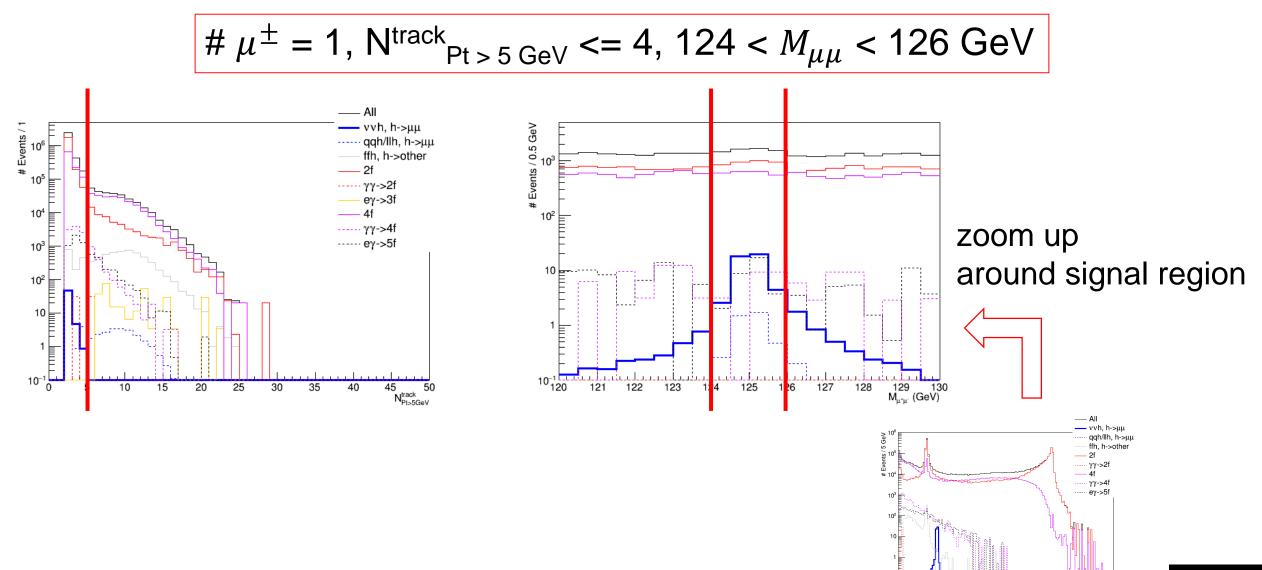
scale to 1600 fb⁻¹: ~40% expected

I don't know how exactly Tino evaluated... (his analysis is 1 TeV $\nu\nu h$) Relatively ~50% worse than extrapolation

Summary / Plans

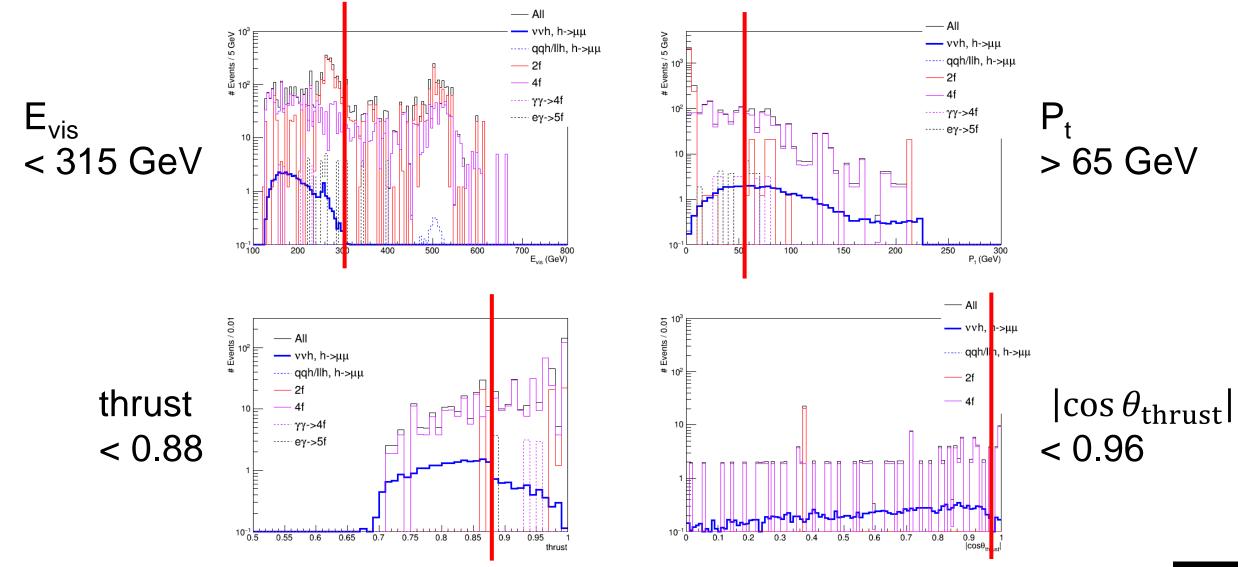
- Performed analysis for $h \rightarrow \mu^+ \mu^-$ at 500 GeV
 - Very challenging due to small $BR(h \rightarrow \mu^+ \mu^-)$
 - Current precision is 60%
- Need some work to suppress more backgrounds, especially $\nu\nu\mu\mu$ backgrounds
 - Now try to find useful variables...
- Re-weighting by $\frac{1}{\sigma}$ (still work in progress)


BACKUP SLIDES


Muon Reconstruction

- almost not changed
 - $E_{track} > 15 \text{ GeV}$
 - $E_{ECAL}/(E_{ECAL}+E_{HCAL}) < 0.6$
 - $(E_{ECAL}+E_{HCAL})/|P_{track}| < 0.4$
 - E_{yoke} > 1 GeV <--- 3f and aa_2f are SGV samples, cannot use this information
 - $|d_0/sigma(d_0)| < 5$

Muon Reconstruction



Precuts

600 70 M_{u*u} (GeV)

Optimization

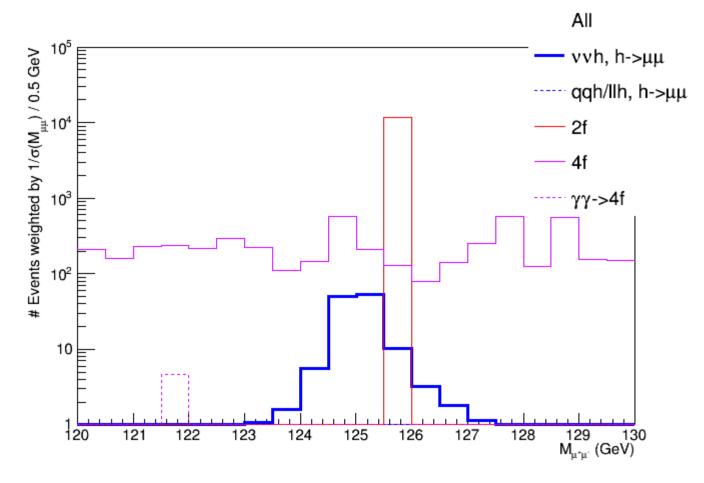
Results

					<u> </u>		-		
	$\nu \nu h$	$qqh+\ell\ell h$	ffh						
	h ightarrow u u	$h \rightarrow \nu \nu$	$h \rightarrow \text{other}$	2f	$\gamma\gamma ightarrow 2 { m f}$	3f	4f	$\gamma\gamma ightarrow 4 { m f}$	5f
No cut	57.53	31.13	4.116×10^{5}	4.224×10^7	4.283×10^{9}	4.269×10^{8}	4.592×10^{7}	3.356×10^{5}	2.209×10^{5}
$\# \mu^{\pm}$	54.39	27.39	6895.00	2.071×10^{6}	62.62	299.75	1.209×10^{6}	1.131×10^4	6125.00
$\# N_{P_{t}>5 \text{GeV}}^{\text{track}}$	54.27	4.89	1425.76	2.014×10^6	31.28	0	9.826×10^{5}	9544.48	4411.00
$M_{\mu\mu}$	44.61	3.94	0	3741.41	0	0	2407.24	21.81	31.63
Evis	43.88	0.17	0	2390.68	0	0	1529.57	18.66	24.10
P_t	25.97	0.07	0	64.20	0	0	457.80	6.07	3.68
thrust	20.48	0.05	0	20.60	0	0	118.92	0	0
θ_{thrust}	19.84	0.05	0	20.60	0	0	102.07	0	0

Table 2: The cut statistics using fully-simulated samples.

I obtained $N_{\text{sig}} = 19.84$ and $N_{\text{bkg}} = 122.72$. The significance is $\frac{19.84}{\sqrt{19.84 + 122.72}} = 1.66$, and the precision is $\frac{\Delta(\sigma \times \text{BR})}{(\sigma \times \text{BR})} = 60\%$.

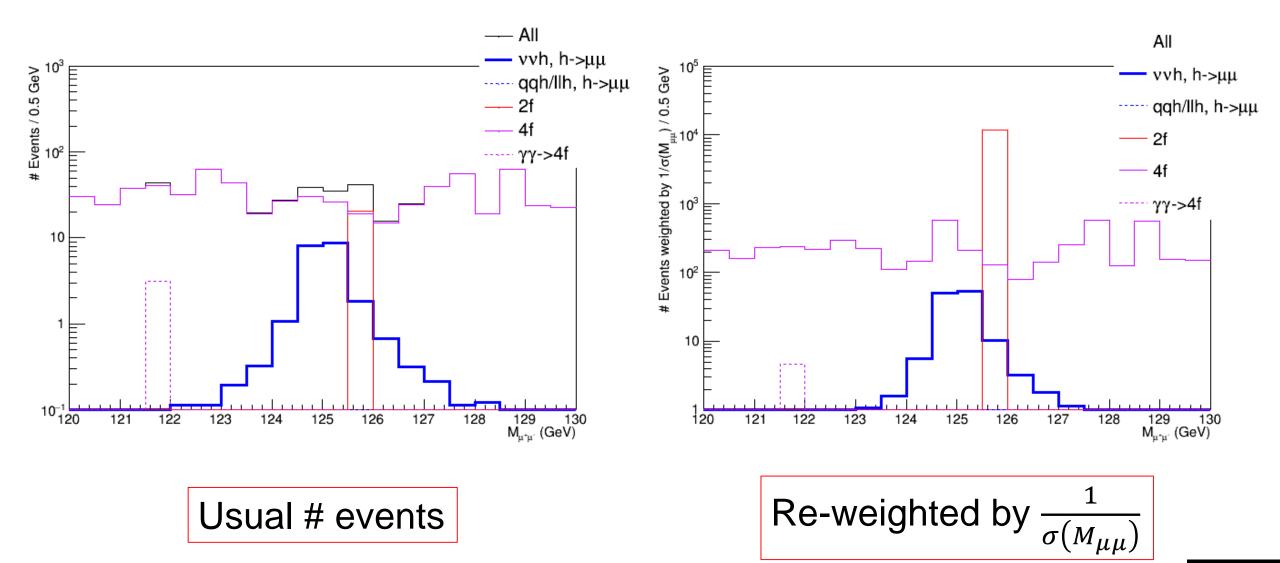
Results are relatively ~10% worse than previous. New processes such as 3f and aa_2f are completely suppressed. Major 4f backgrounds were $\nu\nu\mu\mu$ and a bit $\nu\nu\tau\tau$ (as expected).


Remained background

- 4f
 - ZZWWMix_leptonic (ID: 250030, 250032)
 - SingleZnunu_leptonic (ID: 250054, 250056)
- 2f
 - 2f_Z_leptonic (ID: 250106)

Re-weighting

- Mikael's suggestion
- Apply $\frac{1}{\sigma(M_{\mu\mu})}$ as a re-weighting factor
 - Signal will grow up in signal region
 - Backgrounds will not so grow up or even decrease


Re-weighting plot

All events after optimum cuts except $M_{\mu\mu}$ cut range changed to 120 - 130 GeV are plotted.

Re-weighted by $\frac{1}{\sigma(M_{\mu\mu})}$. 2f in only one MC event 4f looks flat (in log plot)

Comparison

