

Higgs decay to WW* in HZ at 500 GeV

Mila Pandurović

Vinca Institute of Nuclear Sciences

Higgs/EW group meeting 31. August 2016. rewiew

- Introduction
- The review of analysis results
- The comparison of the signal samples
- Summary

Introduction

- □ Analyzed HZ fully hadronic decay: $Z \rightarrow qq$, $H \rightarrow WW^* \rightarrow qqqq$
- \square $\mbox{ BF}_{H \rightarrow WW} \mbox{ }^21.5\%$, $\mbox{ BF}_{WW \rightarrow qqqq} \mbox{ }^45.4\% \Longrightarrow \mbox{ }^10$ % of Higgs decays
- □ HZ @500GeV $\sigma(e^+e^- \rightarrow HZ)$ ~114 fb including LR polarization
- $\label{eq:started_st$

$$\frac{g^{2}_{HZZ} \cdot g^{2}_{HWW}}{\Gamma_{H}}$$

Signal signature:

6 central jets in the final state

Analysis strategy

Analysis proceeds in several steps:

Fast Jet \Leftarrow \downarrow Lcfi Vertexing \Leftarrow \downarrow \downarrow \leftarrow Preselection \Leftarrow \downarrow \checkmark MV selection \Leftarrow \downarrow \downarrow

- ⇐ k_T exclusive, PandoraPFO's Force events into 6 jets , R=1.5
- \leftarrow 6 jet hypothesis to apply btagging
 - Reduction of large cross-section background
 - BDT

$$\frac{\Delta \sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$$

- □ The event is forced into 6 jets
- Obtained jets are grouped into pairs to form the Higgs, W, W* and Z bosons
- $\hfill\square$ The combination which minimizes the χ^2 is chosen :

$$\chi^{2} = \frac{((M_{ij} - M_{W})^{2})^{2}}{\sigma^{2}_{W}} + \frac{((M_{kl} - M_{Z})^{2})^{2}}{\sigma^{2}_{Z}} + \frac{((M_{ijmn} - M_{H})^{2})^{2}}{\sigma^{2}_{H}}$$

• For the $\sigma^2_{H,W,Z}$ - WA width

R parameter for jets

- □ Force event into 6 jets. R=0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
- Jet Pairing to form Higgs, Z, W
- Fit of the invariant mass of the Z and Higgs boson in an interval s around the peak

85 <m_z<95 120 <m_{Higgs}<130

The best fit results are obtained for the R=1.5 which is further used in the analysis

Higgs and Z boson invariant mass and angles between jets

- Localised masses M_z vs M_H
- $\hfill \Theta_{\text{HiggsJets}}$ vs $\theta_{\text{Z jets}}$ angles between jets that are used to form Z and Higgs

Process		σ[fb]	#evts/0.5ab1
signal	106730	11.33	5665
Other Higgs decays	106525	103.45	51725
$e^+e^- \rightarrow 4f_ZZ_hadronic$	250002	680.23	340115
e ⁺ e ⁻ → 4f_WW_hadronic	250006	7680.69	3840345
$e^+e^- \rightarrow 4f WW/ZZ mix hadronic$	250010	6400.11	3200055
$e^+e^- \rightarrow 4f_ZZ_semileptonic$	250014	608.57	304285
$e^+e^- \rightarrow 4f_WW_semileptonic$	250018	9521.45	4760725
$e^+e^- \rightarrow 2f$ hadronic	250114	32470.5	16235250
$e^+e^- \rightarrow 6f_t\bar{t}$ yyxylv	108675	232.02	116740
$e^+e^- \rightarrow 6f_t\bar{t}$ yyuyyc	108683	163.32	81160
$e^+e^- \rightarrow 6f_xWW$	37078	15.69	7845

Invariant masses

m_z m_H

Input variables

- Number of particle flow objects NPFO
- Event shape variable:thrust

Input variables

Jet transition probabilities

 a kt value at which number of
 jets transits from i number of
 jets to j, y_{ij}

Preselection

- ε signal>99%: NPFO>40 thrust<0.95 y45<4.4 y56<4.8
- Additional cut 70< $\rm m_z\,{<}110$ \Rightarrow $\epsilon_{\rm signal}{=}$ 80.41%

Process		σ[fb]	#evts/0.5ab-1	ε _{pres} [%]	#evts/0.5ab ⁻¹ preselection
signal	106730	11.33	5665	80.0	4527
Other Higgs decays	106525	103.45	51725	61.3	31718
$e^+e^- \to 4f_ZZ_hadronic$	250002	680.23	340115	58.3	191772
$e^+e^- \rightarrow 4f_WW_hadronic$	250006	7680.69	3840345	45.7	1758779
e^+e^- $\rightarrow 4f WW/ZZ mix hadronic$	250010	6400.11	3200055	46.1	1475371
$e^+e^- \rightarrow 4f_ZZ_semileptonic$	250014	608.57	3 <mark>0</mark> 4285	11.3	34428
$e^+e^- \to 4f_WW_semileptonic$	250018	9521.45	4760725	11.3	538652
$e^+e^- \rightarrow 2f$ hadronic	250114	32470.5	16235250	7.0	1143281
$e^+e^- \rightarrow 6f_t\bar{t}$	108675	232.02	116740	59.0	689 <mark>5</mark> 7
$e^+e^- \rightarrow 6f_t\bar{t}$	108683	163.32	/	/	/
$e^+e^- \rightarrow 6f_WWZ$	37078	1	1	1	/

TMVA

Input variables

- Invariant masses: m_Z m_{Higgs} m_W m_{w*}
- **D** NPFO E_{vis} jet P_t
- Event shape variables: thrust, aplanarity, sphericity, oblateness
- **D** Jet transitions: $y_{12} y_{23} y_{34} y_{45} y_{56} y_{67}$
- btag applied to all six jets, used the four highest btag values: btag1, btag2, btag3, btag4
- Angle between jets that comprise Z: ThetaPartZ
- Angle between jets that comprise W: ThetaPartW

Training was done on all backgrounds,

Process		σ[fb]	#evts/0.5ab-1	#evts./0.5ab ⁻¹ pres	ε _{tmva/pres} [%]	#evts/0.5ab ^{.1} tmva
signal		11.33	5665	4527	30.0	1348
Other Higgs decays	106525	103.45	<mark>51725</mark>	31718	5.4	1713
$e^+e^- \rightarrow 4f_ZZ_hadronic$	250002	680.23	340115	191772	0.17	331
$e^+e^- \rightarrow 4f_WW_hadronic$	250006	7680.69	<mark>384</mark> 0345	1758779	<0.05	733
$e^+e^- \rightarrow 4f WW/ZZ mix hadronic$	250010	6400.11	3200055	<mark>1475371</mark>	<0.05	616
$e^+e^- \rightarrow 4f_ZZ_semileptonic$	25001 <mark>4</mark>	608.57	<mark>304</mark> 285	34428	<0.02	0
$e^+e^- \rightarrow 4f_WW_semileptonic$	250018	9 <mark>521.</mark> 45	4760725	538652	<10 ⁻⁴	0
$e^+e^- \rightarrow 2f$ hadronic	250 <mark>11</mark> 4	32470.5	16235250	1143281	0.14	1617
$e^+e^- \rightarrow 6f_t\bar{t}$	108675	232.02	116740	68957	0.11	79
$e^+e^- \to 6f t\bar{t}$	108683	163.32	/	/	/	/
$e^+e^- \rightarrow 6f_WWZ$	37078	/	/	/	1	/

Dominant background: other Higgs decays, qqqq, qq

Reduction after tmva

After preselection After TMVA Ung 105 UN 250 Signal ionWWbck 10^{4} ZZ h 2004f WW h 10^3 4f WW ZZ h 150 4f ZZ sl 10^{2} 4fWW sl 100 21 10 50 tibar 1 80 90 100 105 110 75 80 85 90 95 70 75 85 95 70 100 105 110 m_Z (GeV) m₂ (GeV)

The dominant background after mva is qqqq

$$\frac{\Delta \sigma}{\sigma} = \frac{\sqrt{S + B}}{S} \approx 6\%$$

Signal samples

- □ HZ inclusive, extracting: $H \rightarrow WW^* \rightarrow 4q^{500}$
- □ Exclusive production of $H \rightarrow WW^* \rightarrow 4q$ specific channel
- Higher NPFO's is resulting in slight discrepancy between Higgs and Z boson reconstructed invariant masses 600
- All other distributions show no noticeable difference

- **The same difference is observed in Monte Carlo**
- Used stable particles: Generator status==1
- When used getSimulatorStatus it has been found that the difference was in the overlaid particles, status="o", showing in exclusive 106730, not present in inclusive sample 106525

Monte Carlo

- The distribution of stable particles (generator status=1)
- After removing the overlaid particles from 106730 we observe matching of that the number of final state particles with the106525 file

Summary

- High cross-section backgrounds are included, plans include 6f final states
- **The preliminary relative statistical uncertainty 6.0%**
- Uncertainty of the measurement is dominated by qqqq, qq and other Higgs decays
- Difference between two signal sample is observed both in reconstructed and MC samples
- The main difference are overlaid particles, after removal of the overlaid particles the MC distributions of the stable particles are the same
- In the analysis for the obtained result the exclusive (106730) sample is used for signal and for other Higgs decays inclusive sample (106525): not consistent
- □ For consistency use HZ sample: only 10⁴ events available

BACKUP

M. Pandurović

Higgs/EW group meeting 31. August2016.

* HEP & ROVP VIH(X

Backgrounds

M. |

Process		σ[fb]	#evts/0.5ab-1
Other Higgs decays	106525	103.4	51725
$e^+e^- \rightarrow 4f_ZZ_hadronic$	250002	680.2	340115
$e^+e^- \rightarrow 4f_WW_hadronic$	250006	7680.7	3840345
$e^+e^- \rightarrow 4f WW/ZZ mix hadronic$	250010	6400.1	3200055
$e^+e^- \rightarrow 4f_ZZ_semileptonic$	250014	608.6	304285
$e^+e^- \rightarrow 4f_WW_semileptonic$	250018	9521.4	4760725
$e^+e^- \rightarrow 2f$ hadronic	250114	32470.5	16235250
$e^+e^- \rightarrow 6f_t\bar{t}_yyxyev$	108670	116.9	58450
$e^+e^- \rightarrow 6f_tt_yyyeyx$	108668	117.1	58550
$e^+e^- \rightarrow 6f_t\bar{t}_yyuyyc$	108679	164.4	82200
$e^+e^- \rightarrow 6f_t\bar{t}_yycyyu$	108681	165.5	82750
$e^+e^- \rightarrow 6f_t\bar{t}_yyxylv$	108675	231.1	116500
$e^+e^- \rightarrow 6f_t\bar{t}_yyvlyx$	108673	231.6	115800
e ⁺ e ⁻ → 6f_tt¯_yycyyc	108683	163.3	81650
e ⁺ e ⁻ → 6f_tt̄_yyuyyu	108677	166.6	83300

23

×