

Analysis Plans Related to Electroweak/Higgs

Graham W. Wilson

University of Kansas

August 31st 2016

Physics Topics of Interest

Precision Electroweak Measurements

- W Mass at threshold (in OK shape)
- **2** W Mass from constrained reconstruction (high importance)
- **③** Revisiting A_{LR} (at $\sqrt{s} = M_{\text{Z}}$). Looking into beam polarization sharing.

Higgs Measurements

- Higgs Mass ($\nu\nu$ bb). Exploit per event jet energy resolution.
- Improve Leptonic Recoil? Vertex and beam-spot constraints and electron momentum reconstruction (GSF?)

Z Measurements

- Physics case for "Giga-Z"
- Obtector case for "Z-running for calibration"
- Oetector performance and systematics minimization

Enabling Techniques and Needed Developments

Exploiting per Event Jet Energy Resolution

- Work so far has focused on potential of mass-constrained fits
- **②** Work with Brian van Doren on mass-constrained $\pi^0 \rightarrow \gamma \gamma$
- New work with Justin Anguiano on mass-constrained $\pi^0 \to e^+e^-\gamma$ and $\eta \to \pi^+\pi^-\gamma$. Initially started as a precursor to π^0 conversion reconstruction.
- Gan extend to more involved decay chains including vertex constraints.

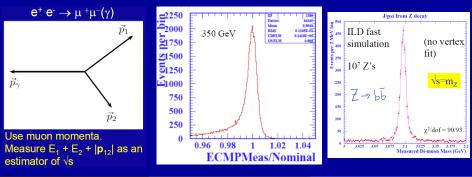
Absolute Center-of-Mass Energy Determination - Key Issue

- () Need further work on $\mu\mu(\gamma)$ method $(\sqrt{s}_{\rm p})$
- **②** Systematic uncertainty depends directly on absolute momentum scale. Most obvious method is with $J/\psi \rightarrow \mu\mu$. Statistics not great. Targeting 10 ppm.
- Above is realistic? Looking into other methods. Precision measurement of kaon mass using $K^+ \rightarrow \pi^+ \pi^- \pi^+$ and use $K^+ \rightarrow \mu^+ \nu$?

Ultimate Calorimetry?

• Precision cell-by-cell time-stamping for particle flow? Ideal for photons.

 $M_{
m W}$ is an experimental challenge. Especially so for hadron colliders.


The three most promising approaches to measuring the W mass at an e^+e^- collider are:

- Polarized Threshold Scan Measurement of the W⁺W⁻ cross-section near threshold with longitudinally polarized beams.
- Constrained Reconstruction Kinematically-constrained reconstruction of W⁺W⁻ using constraints from four-momentum conservation and optionally mass-equality as was done at LEP2.
- Hadronic Mass (discussed by Katsu) Direct measurement of the hadronic mass. This can be applied particularly to single-W events decaying hadronically or to the hadronic system in semi-leptonic W⁺W⁻ events.

Method 1 needs dedicated running near $\sqrt{s} = 161$ GeV. Methods 2 and 3 can exploit the standard $\sqrt{s} \ge 250$ GeV ILC program. Methods 1 and 2 need the absolute \sqrt{s} well measured.

Beam Energy Measurement

- Critical input to measurements of m_t, m_W, m_H, m_Z, m_X using threshold scans.
- Standard precision $O(10^{-4})$ for m_t straightforward.
- Targeting precision $O(10^{-5})$ for $m_{W_1} m_Z$
 - Muon momenta based strategy looks feasible

Graham W. Wilson (University of Kansas)

Momentum Scale Calibration (essential for \sqrt{s})

Most obvious is to use $J/\psi \rightarrow \mu^+\mu^-$. But event rate is limited.

Particle	$n_{Z^{had}}$	Decay	BR (%)	$n_{Z^{had}} \cdot BR$	Г/М	PDG ($\Delta M/M$)
J/ψ	0.0052	$\mu^+\mu^-$	5.93	0.00031	3.0×10^{-5}	$3.6 imes 10^{-6}$
K_S^0	1.02	$\pi^+\pi^-$	69.2	0.71	1.5×10^{-14}	$2.6 imes10^{-5}$
Λ	0.39	$\pi^{-}p$	63.9	0.25	2.2×10^{-15}	$5.4 imes10^{-6}$
D^0	0.45	$K^{-}\pi^{+}$	3.88	0.0175	8.6×10^{-13}	$2.7 imes10^{-5}$
\mathbf{K}^+	2.05	various	-	-	$1.1 imes 10^{-16}$	$3.2 imes10^{-5}$
π^+	17.0	$\mu^+ u_\mu$	100	-	$1.8 imes10^{-16}$	$2.5 imes10^{-6}$

Candidate particles for momentum scale calibration and abundances in Z decay

Sensitivity of mass-measurement to p-scale (α) depends on daughter masses and decay

$$m_{12}^2 = m_1^2 + m_2^2 + 2p_1p_2 \left[(\beta_1\beta_2)^{-1} - \cos\psi_{12} \right]$$

Particle	Decay	$ < \alpha >$	$\max \alpha$	σ_M/M	$\Delta p/p$ (10 MZ)	$\Delta p/p$ (GZ)	PDG limit
J/ψ	$\mu^+\mu^-$	0.99	0.995	$7.4 imes 10^{-4}$	13 ppm	1.3 ppm	3.6 ppm
K_S^0	$\pi^+\pi^-$	0.55	0.685	$1.7 imes 10^{-3}$	1.2 ppm	0.12 ppm	38 ppm
Λ	$\pi^{-}p$	0.044	0.067	$2.6 imes 10^{-4}$	3.7 ppm	0.37 ppm	80 ppm
D^0	$K^{-}\pi^{+}$	0.77	0.885	$7.6 imes10^{-4}$	2.4 ppm	0.24 ppm	30 ppm

Estimated momentum scale statistical errors (p = 20 GeV)

Use of J/ψ would decouple \sqrt{s} determination from M_Z knowledge. Opens up possibility of improved M_Z measurements.

Graham W. Wilson (University of Kansas)

Backup Slides

- ILC TDR design focused on $\sqrt{s} > 200$ GeV.
- \bullet Luminosity naturally scales with γ at a linear collider.
- For nominal $L = 1.8 \times 10^{34}$ at $\sqrt{s} = 500$ GeV corresponding L at $\sqrt{s} = 91$ GeV is 3.3×10^{33} .
- Need modification to the e^+ production scheme.
- Details need detailed design but no obvious technical show-stoppers.

- Direct discovery of new physics would be wonderful. Looking forward to new results from LHC Run II.
- In the years before the direct discoveries of the top quark and the Higgs boson, precision measurements of the then observable Standard Model parameters pointed the way.
- If new physics continues to evade direct detection, ultra-precise measurements of the fundamental parameters of the Standard Model will become especially compelling. Can probe, albeit indirectly, potentially much higher energy scales and associated new physics.

$A_{ m LR}$ at $\sqrt{s}=M_{ m Z}$

Studied by K. Mönig 1999 For $Z \to f \bar{f},$ general cross-section formula simplifies to

$$\sigma = \sigma_u [1 - P^+ P^- + A_{\rm LR} (P^+ - P^-)]$$

With four combinations of helicities, 4 equations in 4 unknowns. Can solve for $A_{\rm LR}$ in terms of the four measured cross-sections (assumes helicity reversal for each beam maintains identical absolute polarization).

$$\begin{split} \sigma_{++} &= \sigma_u [1 - P^+ P^- + A_{\rm LR} (P^+ - P^-)] \\ \sigma_{-+} &= \sigma_u [1 + P^+ P^- + A_{\rm LR} (-P^+ - P^-)] \\ \sigma_{+-} &= \sigma_u [1 + P^+ P^- + A_{\rm LR} (P^+ + P^-)] \\ \sigma_{--} &= \sigma_u [1 - P^+ P^- + A_{\rm LR} (-P^+ + P^-)] \end{split}$$

For $P^- = 0.8$, $P^+ = 0.6$, $f_{\rm SS} = 0.08$, $\sigma_U^{\it vis} = 33$ nb:

$$\Delta A_{\rm LR}({\rm stat}) = 1.7 \times 10^{-5} / \sqrt{L(100~{\rm fb}^{-1})}$$