HIGGS SELF−COUPLING ANALYSIS WITH H→WW*

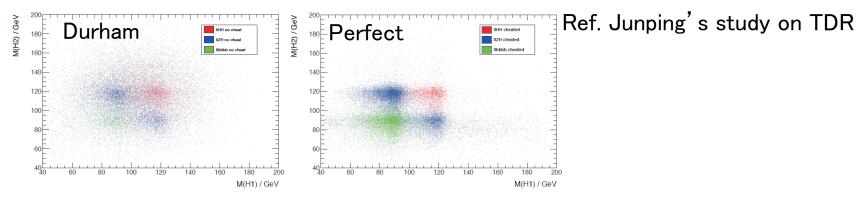
Masakazu Kurata

Higgs/EW meeting, 08/31/2016

COMPONENTS FOR BETTER RESULTS

- Physics results are saturated within present analysis framework
- Basic components for better sensitivity:
 - Lepton ID: Isolated leptons can be identified well, and very good fake suppression
 - →many idea have been introduced
 - B-tagging: better b-tagging algorithm provides better background suppression
 - Jet pairing: good jet pairing can obtain good kinematic variables, which leads to good background suppression
 - Good energy & momentum resolution: of course, but limited by the detector performance
 - →particle ID will be the key to energy correction
 - Jet clustering: jet reconstruction is the key to the analysis, but it is difficult
 - Good background rejection: of course main theme in analyses

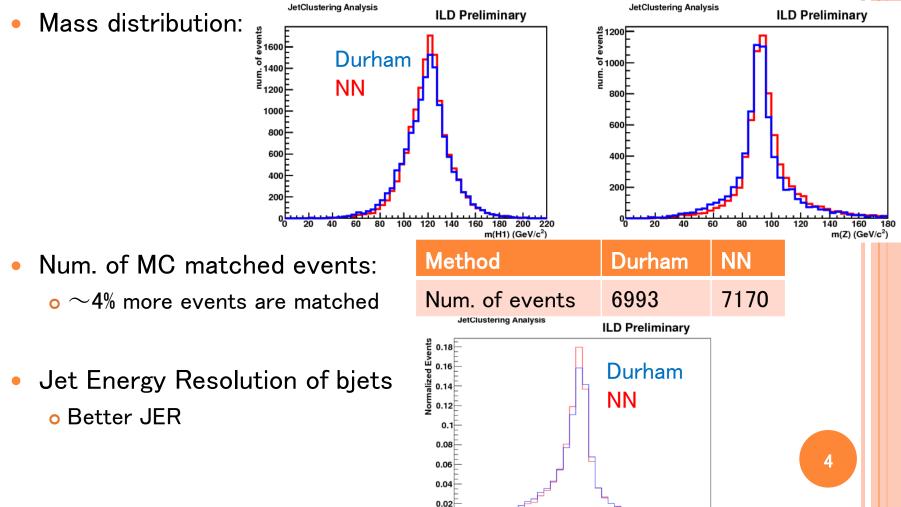
o All the components are related each other


JET CLUSTERING

o Jet reconstruction is the key to obtain better physics variables

• Impact of better jet clustering is very large

e.g.) Higgs self-coupling


 \sim 40% improvement of the sensitivity if jet clustering is perfect

- So, tackling better jet clustering in multi-jet situation is very important
- But, cause of mis-clustering is very complicated
- So far, trying for better jet clustering using Neural Network

PRELIMINARY RESULTS

- o Using qqhh→qq(bb)(bb): 6 jet clustering
 - Use same event as original Durham clustering
 - Jet matching with MC truth is performed(cos heta >0.9 for all the b jets)

0.2 0.4 0.6 0.8

(E(MC)-E(jet))/E(MC)

-0.2 0

-0.6 -0.4

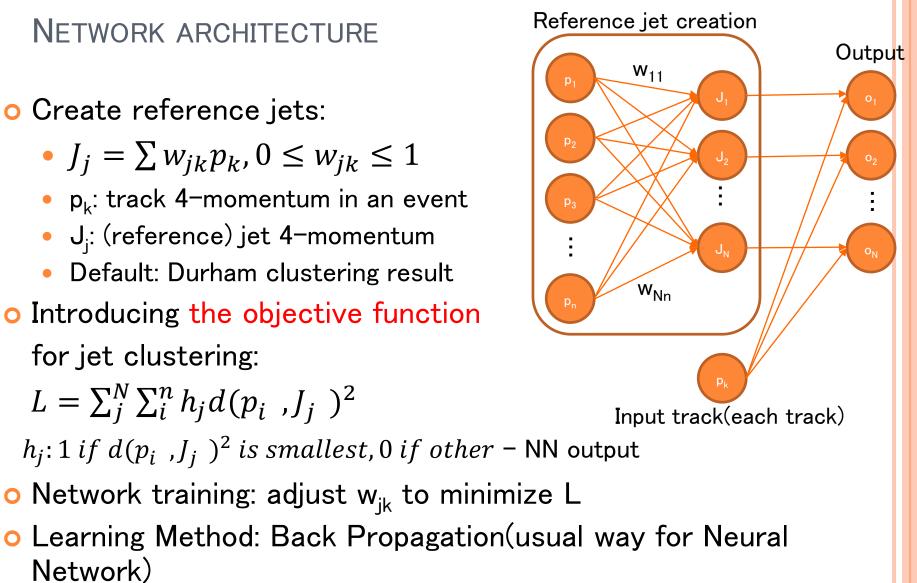
PROBLEMS

- Everything is going to good direction, but the improvement is not enough
 - Need more good idea
 - Need to investigate inside jets and catch some hints
- Neural network training is not perfect
 - Result is robust when shifting far from default…
- Same as the usual neural network, CPUtime for training is relatively large
 - When num. of tacks is large, need more CPUtime

• We need to try everything for better jet clustering

Of course, it is very difficult

NETWORK ARCHITECTURE


• Create reference jets:

• $J_i = \sum w_{ik} p_k$, $0 \le w_{jk} \le 1$

- p_k: track 4-momentum in an event
- J_i: (reference) jet 4-momentum
- Default: Durham clustering result
- o Introducing the objective function for jet clustering:

$$L = \sum_{j}^{N} \sum_{i}^{n} h_{j} d(p_{i} , J_{j})^{2}$$

Network)

Basic idea can be seen everywhere

• $d(p_i, J_j)^2$: take Jade distance measure $d_{ij}^2 = \frac{2E_i E_j (1 - \cos \theta_{ij})}{E_{min}^2}$

REALISTIC SITUATION

- In realistic analysis, how is the situation changed?
 - Compare between NN and orig. Durham result
 - Using same qqHH sample, 6 jet clustering
 - Btag>0.3 is imposed for 4 bjet candidates in a event
 - Higgs masses are reconstructed using χ^2 mass constraint
- Compare the remained event
 - @ χ^{2} <5.0, \sim 10% signal event is increased
 - @ χ^{2} <5.0, ZZH event contamination is \sim 2%
- Going good direction, but of course, not enough

qqHH	Btag>0.30	Chi2<5.0	Chi2<10.0	Chi2<15.0
NN	6721	4217	5422	5935
Org. Durham	6771	3833	5079	5681
ZZH	Btag>0.30	Chi2<5.0	Chi2<10.0	Chi2<15.0
	Diag/0.00			
NN	3311	966	1791	2302

- First of all, events are limited by flavor tagging
 - So far, trained with Durham(default)