Present Status of ML and IR Cryogenics

9/30/2016 T. Okamura

ML Cryogenic System

Overview of Cryogenics

- 4 sub-groups
 - ML Cryogenics now deep
 - IR Cryogenics
 - BDS Cryogenics
 - DR Cryogenics

now deeply discussed

- no change scheme
- unconsidered so far
- unconsidered so far

Each cryogenic island have one or two refrigeration plants. (point#3,#4 have one cryo-plant.)

ML Cryogenics

- TDR scheme
 - All components are installed in underground.

- From the environmental view point,
 - Not good to storage all inventory with gas state of 2.0MPa
 - Required a lot of space for buffer tank on surface.
 - 11 buffer tanks with 250m3 are needed per 1cryo plant
 - TDR proposed that "All inventory should be stored in the state of Liquid"
 - LHE Storage dewar are needed.

Contents of the Change Request

- Location reconsideration
 - Main Compressor surface (change)
 - LHE storage tank surface (change)
 - 2K Cold Box
 underground (keep)
 - 4K Main Cold Box surface or underground (pending)
 - Which is better ?
- From the view point of "SAFETY in Underground"
 - LHE Storage Dewar should not be in cavern.
 - LHE Storage Dewar should be located on Surface.
 - This is high priority boundary condition!

Location issue of 4K-MCB

From the view point of "Steady State Operation"

- In case of surface
 - Easier to do daily check ?
 - Necessity of TRT with 5 inner pipe. (OD=700mm)
 - High cost
 - Low cryogenic efficiency
- In case of underground
 - Without TRT
 - High cryogenic efficiency
 - → Cost reduction
 - \rightarrow 2K and 4K cold box can be combined.

Recent Progress

- Location of 4K-Main Cold box is <u>almost</u> determined.
 - Location is Underground.
 - To reduce manufacturing and <u>running</u> cost.
 - To obtain high efficiency
 - 2K and 4K cold box will be combined each other.
 - Main He compressor
 - ~ 5MW / 1 cyroplant
 - ~ 50 MW in total
 - Minimum input power can be realized
 - 10MW reduction in total.

Some difficulties

- From the view point of "Steady State Operation"
 - Underground plan is very fine.
- From the view point of "Emergency etc."
 - Underground plan has some difficulties.
 - Key Point is "LHE Storage dewar is located on surface." (Change Request)
 - During power failure accident,
 - How to recover "Evaporated HE Gas generated from ML "?
 - In other words,
 - How to liquefy evaporated gas into LHE storage dewar?

How to operate during power failure

- Evaporated He mass should be intentionally reduced as low as possible.
 - Desired value = within 30g/sec
 - Estimated value based on Heat Load = 50 g/sec
- A target time for recovery from starting the total power failure to resuming the ordinal/steady-state operation in our model study
 - Recovery time < 24 H is assumed.
- Quick action against main compressor stop
 - Preparation of simple and robust recovery compressor
 - Operation using secondary power line, immediately after power failure.
 - Preparation of several Buffer tank with 250m3

How to reduce evaporated He gas ?

- Initial mass flow is 25-30 g/sec
- Maximum mass flow is 50 /gsec

The increment is caused by heat load increment due to temperature rise of radiation shield.

- Part of cold evaporated GHE should go through radiation shield.
 - to keep the static load to be < 25~30g/sec</p>
 - efficient way to use the cold gas enthalpy and to keep the thermal load under control.

He Flow Lines in Emergency to Recovery -- under investigation --

Operation Sequence (under investigation)

- 1. During power failure,
 - GHe recovery using Recovery Comp, RC (powered by Generator for < 24 hrs,
 - electric capacity per 1 Cryo Plant is 1MW.
 - Evaporated GHe is stored in the GHE storage tank.
- 2. LHE recovery during warm up,
 - Main comp, RC, Main CB and Small liquefier were operated simultaneously.
 - Total Recovery time ~ 1Week

IR Cryogenic System

Configuration

- Four set of comp. and 4K cold boxes
 - ILD + QD0s
 - SiD + QD0s
 - Final focus QF1 and CC
 - DR (RF and Wiggler)

Superconducting system	compressor	4K cold box	2K refrigerators
ILD +QD0	500kW , surface	1kW, platform	platform
SiD + QD0	500kW , surface	platform	platform
Final Focus QF1 and CC	300kW , surface	Utility space	Utility space
Damping ring	600kW , surface	Cavern	

ILD cryogenic configuration

During Pushpull

- Warm Flexible tubes for Ghe
 - High pressure line
 - Low pressure line
 - Quench recovery line
 - Other line such as compressed air line etc..
- Keep cryogenic condition
- No excitation
 - Busbar is not connected during pushpull
- Maintenance location
 - Cool down, excitation can be done.

Vibration

- <u>Vibration from compressor</u> can be isolated.
- <u>4K system</u> does not have explicit vibration source.
 - Vacuum pump need not to be operated during cryogenic condition
 - Active use of cryo-sorption effect
- <u>2K system</u>
 - Some kinds of vibration source
 - Necessity of vibration measurement using 2K system developed by BNL
- <u>Power supply</u> has vibration source.
 - Source is generated from cooling water. (we measured)
 - When operation of cooling water is stopped, vibration is drastically reduced.
 - But necessity of direct measurement using PS with same spec.