Characterizing Light Higgsinos from Natural SUSY at ILC $\sqrt{s} = 500$ GeV

Jacqueline Yan (KEK)

On behalf of H. Baer (Univ of Oklahoma), M. Berggren, S.-L. Lehtinen, J. List (DESY), K. Fujii (KEK), T. Tanabe (Univ of Tokyo)

Goal of Light Higgsino Study

Demonstrate measurement precision of Higgsino masses and production cross sections

Serve as a basis for future discussions of ILC run scenario in the case of new particles being discovered

Results of masses and cross sections (= "observables") as input

S.-L. Lehtinen (DESY) et al

determine SUSY parameters

e.g. M_1 , M_2 , μ , tan β

- Why?
- To get info about unobserved sparticles
- To test GUT-scale models
- **How?** Global χ^2 fit of to observables

Study required input parameters and precisions; interplay with Higgs precision measurements

Benchmarks in this Study

RNS model (Radiatively-driven natural SUSY)

(LSP)

• 4 light Higgsinos:

 $\widetilde{\chi}_1^0 \quad \widetilde{\chi}_2^0 \quad \widetilde{\chi}_1^+ \quad \widetilde{\chi}_1^-$

- ΔM about 10-20 GeV complies with naturalness (ISR tag not needed)
- This study: $\sqrt{s} = 500 \text{ GeV}$ Full detector simulation

Currently studying ILC1 benchmark

(Pe-, Pe+)	(-1.0,+1.0)	(+1.0,-1.0)	
$\sigma(\chi_1^+\chi_1^-)$ [fb]	1800	335	
$\sigma(\chi_1^0 \chi_2^0)$ [fb]	491	379	

$BR(\chi_1^+ \to \chi_1^0 qq')$	67%
BR(χ ₁ ⁺ → χ ₁ ⁰ lν) (l=e,μ)	22%
$BR(\chi_2^0 \to \chi_1^0 q q')$	58%
BR(χ₂⁰ → χ₁⁰ II) (I=e,μ)	7.4%

NUHM2 model parameters [arXiv:1404.7510]

χî

Ζ

Ζ

Benchmark	ILC1	ILC2
M ₀ [GeV]	7025	5000
M _{1/2} [GeV]	568.3	1200
A ₀ [GeV]	-10427	-8000
tanβ	10	15
μ [GeV]	115	150
M _A [GeV]	1000	1000
M(χ ₁ ⁰) [GeV]	102.7	148.1
$M(\chi_1^{\pm})$ [GeV]	117.3	158.3
$M(\chi_2^{0})$ [GeV]	124.0	157.8
$M(\chi_{3}^{0})$ [GeV]	267.0	538.8

Higgs precision measurements useful for parameter determination

 $\tilde{\chi}_{1}^{+}$

Defined at GUT scale Defined at weak scale Observables

3

Extraction of Higgsino Mass and Cross Section

Mass:

- Kinematic edges of dilepton/dijet energy and invariant mass are functions of √s and Higgsino masses

(requires correction for detector resolution)

Cross section:

Count number of events under dilepton / dijet energy

• Use Toy Monte Carlo to obtain mass and cross section precisions

Left polarization vs right polarization

Higgsino Mass Precisions (combined)

apply χ^2 fit to "observables" (kinematic edges)

MN1: χ_1^0 mass MN2: χ_2^0 mass MC1: χ_1^{\pm} mass

(Ell_max, Ejj_max, Mll_max, Mjj_max are functions of Higgsino masses)

Neutrali	no		4 channels (m	nm, ee, left, right)		
N1N2	MN1	∆MN1/MN1	MN2	ΔMN2/MN2	Scale r	esults to H20
	102.54	0.758%	123.36	0.688%	• Defa	1 polarization.
H20		0.424%		0.385%	• H20	: 1600 fb ⁻¹
	-					
Charging			4 channels (m	n tag, e tag, left, r	right)	
C1C1	MN1	∆MN1/MN1	MC1	∆MC1/MC1		
	116.60	0.447%	132.79	0.435%		
H20		0.250%		0.243%		
			8 channels	(m, e, left, right, l	N1N2, C1C1)	
ALL	MN1	∆MN1/MN1	MN2	∆MN2/MN2	MC1	AMC1/MC1
	110.56	0.405%	130.90	0.372%	126.09	0.396%
H20		0.226%		0.208%		0.221%
Theoretic values: MN1 = 102.70 GeV MN2 = 123.98 GeV, MC1 = 117.33 GeV 8						

• <u>con</u>	<u>nbined</u> s	statistical	mass pro	ecision ~	<u>0.2% (H</u>	<u>20)</u>	
• Dom	• Dominated by precision of chargino channel (higher cross section)						
• Neut	ralino resu	lts consistent	with theore	etic values			
• Char	gino result	s deviated due	e to jet ene	rgy resolution			
H20		0.424%		0.385%	• H20	: 1600 fb ⁻¹	
Charging	2		4 channels (m	n tag, e tag, left, r	ight)		
C1C1	MN1	∆MN1/MN1	MC1	∆MC1/MC1		_	
	116.60	0.447%	132.79	0.435%			
H20		0.250%		0.243%			
	8 channels (m, e, left, right, N1N2, C1C1)						
ALL	MN1	∆MN1/MN1	MN2	∆MN2/MN2	MC1	∆MC1/MC1	
	110.56	0.405%	130.90	0.372%	126.09	0.396%	
H20		0.226%		0.208%		0.221%	
Theoretic MN1: χ ⁰ 1	Theoretic values: MN1 = 102.70 GeV MN2 = 123.98 GeV, MC1 = 117.33 GeV 9 MN1: χ_{1}^{0} mass MN2: χ_{2}^{0} mass MC1: χ_{1}^{\pm} mass						

Cross section precisions

• Neutralino (N1N2): 1 -1.5% (H20)

right polarization has better precision due to suppressed BKG

• Chargino (C1C1) : 0.3-0.7% (H20)

scales with size of cross section

	N1N2	Δσ/σ	C1C1	Δσ/σ
	left, mumu	3.49%	left, mu-tag	0.85%
	left, ee	3.17%	left, e-tag	0.83%
	combined	2.35%	combined	0.59%
	H20	1.31%	H20	0.33%
	N1N2	Δσ/σ	C1C1	Δσ/σ
	right mumu	2.80%	right mu-tag	1.75%
	right ee	2.41%	right e-tag	1.71%
	combined	1.83%	combined	1.22%
	H20	1.02%	H20	0.68%
_				

Summary for Light Higgsino Study

Precision measurement of light Higgsinos with small ΔM (10-20 GeV)

Motivated by both experiment (complementary to LHC) and theory (naturalness)

This study: Full ILD detector simulation

L=500 fb-1 at vs = 500 GeV, (Pe-, Pe+) = (-0.8,+0.3),(+0.8, -0.3)

- Analysis of neutralino mixed production $(\chi_1^0 \chi_2^0)$ and chargino pair production $(\chi_1^+ \chi_1^-)$
- Data selection yields good S/B ratio ; almost no background for chargino
- Fit kinematic edges to extract Higgsino masses
- Fit to overall distribution to extract production cross sections

Obtained results for ALL channels

- Mass precision $\sim 0.2\%$
- Cross section precision: neutralino: 1 – 1.5% chargino: 0.3 – 0.7%

results obtained in this study become input to SUSY parameter determination

To extract other SUSY parameters, test GUT-scale physics and SUSY-breaking mechanism

(from full H20 run, three \sqrt{s})

```
\Delta M_1 = 1.5\%

\Delta M_2 = 1.0\%

\Delta M_3 = 11.6\%

\Delta \mu = 0.1\%

\Delta \tan \beta = 2.5\%
```

Plans for Higgsino Studies

• Analyze more challenging benchmarks with smaller ΔM

→ compare precision of SUSY parameter extraction

- Summarize the results of this analysis in document
- First draft for section on Higgsino is done
- Move towards publication

Event Generator: WHIZARD v1.95 (DBD setup) Cross sections for \sqrt{s} =500 GeV with TDR beam parameters

	ILC1	ILC2	mirage12_15
ch1ch1.eL.pR	1799.9 fb	1530.5 fb	1536.6 fb
ch1ch1.eR.pL	334.5 fb	307.2 fb	308.0 fb
neu1neu2.eL.pR	490.9 fb	458.9 fb	460.6 fb
neu1neu2.eR.pL	378.5 fb	353.8 fb	355.1 fb

Additional Material

Motivation for Searching Light Higgsinos with Small ΔM

From experimental point of view:

- LHC already excluded large regions with large ΔM = M(NLSP) – M(LSP)
- Remaining region with compressed spectrum very small visible energy release, near impossible to probe at LHC
 - ➔ ILC is essential

From theoretical point of view: Compressed Higgsino spectra related to

naturalness [e.g. arXiv:1212.2655, arXiv:1404.7510]

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

• To maintain small electroweak fine tuning ΔEW (<~3%), all contributions on right-hand-side

should be comparable to M(Z) \rightarrow requires $\mu \sim 100-300 \text{ GeV}$

top and bottom squarks in the few TeV regime, gluino mass 2–4 TeV, 1st, 2nd generation squarks and sleptons in the 5–30 TeV regime

- μ feeds mass to both SM (W, Z, h) and SUSY particles (Higgsinos)
- Higgsino masses not too far from masses of W, Z, h (\sim 100 GeV)

Motivation for Searching Light Higgsinos with Small ΔM

From experimental point of view:

- LHC already excluded large regions with large ΔM = M(NLSP) – M(LSP)
- Remaining region with compressed spectrum very small visible energy release, near impossible to probe at LHC
 - ➔ ILC is essential
- From theoretical point of view:
 Compressed Higgsino spectra related to
 naturalness [e.g. arXiv:1212.2655, arXiv:1404.7510]

If SUSY particles exist al all, they may be in a region only accessible by the ILC (?)

How do these signals look in the detector? (1)

√s =500 GeV

How do these signals look in the detector? (2)

√s =500 GeV

Event Selection

Neutralino mixed production with leptonic decay $e^+e^- \rightarrow \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$

- Reconstruct two leptons (ee or μμ) which originate
 from Z^{*} emission in decay of χ₂⁰ to χ₁⁰
- Major residual bkg. are 4f processes accompanied by large missing energy (vvll)
- 2-γ processes are removed by BeamCal veto, cuts on lepton track p_T, and coplanarity

Chargino pair production with semileptonic decay $e^+e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 q q' \ell \nu$

- Reconstruct two jets which originate from W^{*} emission in decay of χ₁[±] to χ₁⁰
- Use lepton (e or μ) from the other chargino as tag
- BeamCal veto, cuts on missing p_T, # of tracks, # of leptons, and coplanarity remove almost all bkg.

signal

(16)

2-v

 μ^{-}

1

signal

Ζ

 $\gamma(4)$

vvII

1

 $\bar{\nu}_e$ (8)

Extraction of Higgsino Mass

Neutralino mixed production with leptonic decay $e^+e^- \rightarrow \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_2 \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$

- The position of the kinematic edges of the dilepton energy (E_{II}) and invariant mass (M_{II}) are functions of CM energy and the two neutralino masses.
- E_{II,max} and M_{II,max} are extracted by a fit to obtain the neutralino masses need correction for detector/reconstruction effects

Similar for case of chargino pair production (II \rightarrow jj)

Cuts have been designed so as not to destroy upper edge

• Use toy MC (generated from MC data fit) to evaluate statistical uncertainty

Extraction of Cross Section

Uncertainty of right pol is about 3 / 4 of left pol dependent on statistics (evaluated using Toy MC)

Extraction of Cross Section

C1C1

Left pol has x2 better precision

500 GeV, 500 fb⁻¹, P

χ̃⁺χ̃, (ILC1)

SM bkg

dependent on statistics

Mass Precisions (individual channels)

√s = 500 GeV

Convert precisions of kinematic edges to those of Higgsino masses

 $L = 500 \text{ fb}^{-1}$

MN1: χ_1^0 mass MN2: χ_2^0 mass MC1: χ_1^{\pm} mass

Neutralino: 1 – 2%

polarization		MN1	MN2	Δ MN1	∆MN1/MN1	Δ MN2	
left	mm	102.26	123.02	1.77	1.7%	1.76	1.4%
left	ee	100.30	120.81	2.17	2.2%	2.15	1.8%
right	mm	103.06	123.99	1.82	1.8%	1.81	1.5%
right	ee	103.41	124.30	1.44	1.4%	1.43	1.1%

Chargino: left pol is better than 1%

\sim 2 times better than right pol

polarzation		MN1	MC1	Δ MN1	Δ MN1/MN1	∆MC1	ΔMC1/MC1
left	mu tag	113.50	129.14	0.82	0.7%	0.82	0.6%
left	e tag	122.96	140.37	1.19	1.0%	1.18	0.8%
right	mu tag	116.42	132.44	1.76	1.5%	1.75	1.3%
right	e tag	125.34	142.98	2.20	1.8%	2.18	1.5%

Theoretic values MN1 = 102.70 GeV MN2 = 123.98 GeV, MC1 = 117.33 GeV

 $e^+e^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_2^0, \quad \widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 \ell^+ \ell^-$

 $e^+e^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_2^0, \quad \widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 \ell^+ \ell^-$

Chargino Search

SUSY Electroweak Sector

(depends on mixing)

SUSY Parameter Determination

- To get information about unobserved sparticles
 - To test GUT-scale models
- How?

Why?

- Global χ² fit of SUSY parameters to observables using Fittino [hep-ph/0412012]
- Fit GUT scale (NUHM2) parameters

Reminder:

Benchmark	ILC2
M ₀ [GeV]	5000
M _{1/2} [GeV]	1200
A ₀ [GeV]	-8000
tanβ	15
μ [GeV]	150
M _A [GeV]	1000

Observables and assumed precision for ILC2 benchmark

observable	value	uncertainty
mass $\widetilde{\chi}_1^{0}, \widetilde{\chi}_2^{0}, \widetilde{\chi}_1^{\pm}$	$\sim 160 { m GeV}$	0.2 GeV
${\it BR}({\widetilde \chi}^0_2 o {\widetilde \chi}^0_1 l^+ l^-)$	0.106	0.1
${\cal BR}(\widetilde{\chi}^0_2 ightarrow\widetilde{\chi}^0_1 qar{q})$	0.590	0.1
${\it BR}({\widetilde \chi}_1^\pm o {\widetilde \chi}_1^0 q {ar q}')$	0.671	0.1
${\it BR}(\widetilde{\chi_1^\pm} o \widetilde{\chi_1^0} l u_l)$	0.329	0.1
$\sigma(\widetilde{\chi}_1^0 \widetilde{\chi}_2^0), 4$ polarisations	$140 - 300 { m ~fb}^{-1}$	1%
$\sigma(\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}),$ 4 polarisations	$200-970~{ m fb}^{-1}$	1%

Defined at GUT scale Defined at weak scale • Uncertainty to be updated with results from simulation study

• Study required precision that allows for full parameter determination

[S.-L. Lehtinen]

[S.-L. Lehtinen]

Fits of NUHM2 Parameters

All 6 parameters are simultaneously varied. Initial values are set to be near the model values.

Each blue point corresponds to a set of parameter values. The χ^2 value is computed for each point.

Using the χ_1^{0} , χ_2^{0} , χ_1^{\pm} masses and production cross sections, $M_{1/2}$ can be determined.

Adding Higgs mass and BR as measured at the ILC fixes μ and possibly constrains other parameters

In addition, if χ_3^0 can be observed in $\chi_2^0\chi_3^0$, tan β can be constrained as well. (ILC1)

Outlook

Test gaugino mass unification by fitting weak scale parameters M₁ and M₂

ILC1

Cross sections (pure beam polarizations) √s=500 GeV with TDR beam parameters

(Pe-, Pe+)	(-1.0,+1.0)	(+1.0,-1.0)
σ(χ ₁ ⁺ χ ₁ ⁻) [fb]	1800	335
$\sigma(\chi_1^{0}\chi_2^{0})$ [fb]	491	379
σ(χ ₂ ⁰ χ ₃ ⁰) [fb]	11.0	8.42
σ(χ ₁ ⁰ χ ₁ ⁰) [fb]	2.03	1.56
σ(χ ₂ ⁰ χ ₂ ⁰) [fb]	0.53	0.41
σ(χ ₁ ⁰ χ ₃ ⁰) [fb]	0.28	0.20

Branching ratios

$BR(\chi_1^+ \to \chi_1^0 q q')$	67%
$BR(\chi_1^{+} \rightarrow \chi_1^{0} Iv) \ (I=e, \mu)$	22%
$BR(\chi_2^0 \to \chi_1^0 qq')$	58%
$BR(\chi_2^{\ 0} \rightarrow \chi_1^{\ 0} II) \ (I=e,\mu)$	7.4%