SUSY model and dark matter determination in the compressed-spectrum region at the ILC.

Mikael Berggren¹

on behalf of the ILC Physics and Detector Study

¹DESY, Hamburg

Talk given at ICHEP, Chicago, II, August, 2016 ++

SUSY models and DM at ILC

Outline

The ILC

Why compressed spectra

- Compressed spectra: Naturalness
- Compressed spectra : DM
- Compressed spectra: Why not seen @ LHC ?
- Compressed spectra: Why seeable @ ILC ?
- Compressed spectra: The data

The Stau-coannihilation STCx models

- DM from cosmology and accelertors
 - STC4 sleptons @ 500 GeV
 - STC4 @ 500 GeV: Prospects for mixing measurements
- News since ICHEP
- Conclusions

- A linear $e^{\frac{(c_{abs})}{e}}e^{-c_{abs}}$ collider.
- E_{CMS} tunable between 250 and 500 GeV, upgradable to 1 TeV.
- Total length 34 km
- $\int \mathcal{L} \sim 250 \text{ fb}^{-1}/\text{year}$. 20 year plan in place.
- Polarisation e^- : 80%, e^+ : \geq 30%.
- 2 experiments, but only one interaction region.
- Concurrent running with the LHC.
- Under government study in Japan.

Mikael Berggren (DESY)

SUSY models and DM at ILC

A D > A B > A B > A

- A linear $e^{\frac{(c+re)}{r}}e^{-c}$ collider.
- E_{CMS} tunable between 250 and 500 GeV, upgradable to 1 TeV.
- Total length 34 km
- $\int \mathcal{L} \sim 250 \text{ fb}^{-1}/\text{year}$. 20 year plan in place.
- Polarisation e^- : 80%, e^+ : \geq 30%.
- 2 experiments, but only one interaction region.
- Concurrent running with the LHC.
- Under government study in Japan.

Mikael Berggren (DESY)

SUSY models and DM at ILC

The ILC is not LHC

• Lepton-collider: Initial state is known.

Production is EW ⇒

- Small theoretical uncertainties.
- No "underlying event".
- Low cross-sections wrt. LHC, also for background.
 - But:
 ^o Processes.....
- Trigger-less operation.
- Extremely small beam-spot: 5 nm \times 100 nm \times 150 μ m.
- Low background \Rightarrow detectors can be:
 - Thin : few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4*π*: holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Connecticut relative to earth.

イロト イポト イヨト イヨト 二日

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlying event".
 - Low cross-sections wrt. LHC, also for background.
 - But: $\gamma\gamma$ -processes...
 - Trigger-less operation.
- Extremely small beam-spot: 5 nm \times 100 nm \times 150 μ m.
- Low background ⇒ detectors can be:
 - Thin : few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π: holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Connecticut relative to earth.

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlying event".
 - Low cross-sections wrt. LHC, also for background.
 - But: $\gamma\gamma$ -processes...
 - Trigger-less operation.
- Extremely small beam-spot: 5 nm \times 100 nm \times 150 μ m.
- Low background \Rightarrow detectors can be:
 - Thin : few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π: holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Connecticut relative to earth.

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlying event".
 - Low cross-sections wrt. LHC, also for background.
 - But: $\gamma\gamma$ -processes...
 - Trigger-less operation.
- Extremely small beam-spot: 5 nm \times 100 nm \times 150 μ m.
- Low background ⇒ detectors can be:
 - Thin : few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered
 - = Area of Connecticut relative to earth.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why compressed spectra

Why compressed spectra ?

Why would one expect the spectrum to be compressed ?

SUSY models and DM at ILC

ICHEP 2016++ 5 / 22

< ロ > < 同 > < 回 > < 回 >

Why compressed spectra ? Natural SUSY: Light, degenerate higgsinos

Because it is natural !

- Natural SUSY:
 m²_Z = 2<sup>m²_{Hu} tan²β-m²_{Hd}/(1-tan²β) 2 |μ|²
 ⇒ Low fine-tuning ⇒ μ = O(weak scale) ⇒ lightest bosinos mainly higgsino ⇒ close in mass ⇒ Compressed spectrum
 </sup>
- However: Not enough Dark Matter
- For more on this: Talk by J. List and H. Baer in this session.

Why compressed spectra ? Natural SUSY: Light, degenerate higgsinos

Because it is natural !

• Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- ⇒ Low fine-tuning ⇒ µ = O(weak scale) ⇒ lightest bosinos mainly higgsino ⇒ close in mass ⇒ Compressed spectrum
- However: Not enough Dark Matter
- For more on this: Talk by J. List and H. Baer in this session.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why compressed spectra ? Natural SUSY: Light, degenerate higgsinos

Because it is natural !

- Natural SUSY: • $m_7^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 \tan^2 \beta} - 2 |\mu|^2$
 - \Rightarrow Low fine-tuning $\Rightarrow \mu = O$ (weak scale) \Rightarrow lightest bosinos mainly higgsino \Rightarrow close in mass \Rightarrow Compressed spectrum
 - However: Not enough Dark Matter
 - For more on this: Talk by J. List and H. Baer in this session.

イロト イ団ト イヨト イヨト

Why compressed spectra ? DM and the weak miracle

Because actually can give the right Dark Matter !

- Need balance between early universe production and decay.
- One compelling option is [˜] Co-annihilation. For this to contribute: Early universe density of [˜]τ and χ₁⁰ similar ⇒ Once again Compressed spectrum.

4 A N

Why compressed spectra ? DM and the weak miracle

Because actually can give the right Dark Matter !

- Need balance between early universe production and decay.
- One compelling option is [˜] Co-annihilation. For this to contribute: Early universe density of [˜]τ and χ₁⁰ similar ⇒ Once again Compressed spectrum.

Why compressed spectra ? DM and the weak miracle

Because actually can give the right Dark Matter !

- Need balance between early universe production and decay.
- One compelling option is [˜] Co-annihilation. For this to contribute: Early universe density of [˜]τ and χ₁⁰ similar ⇒ Once again Compressed spectrum.

Recall:

- LHC's strongly excludes 1:st & 2:nd gen. \tilde{q} :s and the \tilde{g} . These states have no influence on DM, g-2, naturalness, ...
- Ie. : The reason that CMSSM is dead is the *irrelevant part*!
- So: Remove connection (1:st & 2:nd gen q̃:s and the g̃) ↔ (3:d gen. q̃:s and EW-sector). Price: more free parameters.
- And:If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- Ie.: NOT a large missing E_T model, NOR a simplified one ⇒ weaker limits.

Recall:

- LHC's strongly excludes 1:st & 2:nd gen. \tilde{q} :s and the \tilde{g} . These states have no influence on DM, g-2, naturalness, ...
- Ie. : The reason that CMSSM is dead is the *irrelevant part*!
- So: Remove connection (1:st & 2:nd gen q̃:s and the g̃) ↔ (3:d gen. q̃:s and EW-sector). Price: more free parameters.
- And:If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- Ie.: NOT a large missing E_T model, NOR a simplified one ⇒ weaker limits.

Recall:

- LHC's strongly excludes 1:st & 2:nd gen. \tilde{q} :s and the \tilde{g} . These states have no influence on DM, g-2, naturalness, ...
- Ie. : The reason that CMSSM is dead is the *irrelevant part*!
- So: Remove connection (1:st & 2:nd gen q̃:s and the g̃) ↔ (3:d gen. q̃:s and EW-sector). Price: more free parameters.
- And:If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- Ie.: NOT a large missing E_T model, NOR a simplified one ⇒ weaker limits.

Recall:

- LHC's strongly excludes 1:st & 2:nd gen. \tilde{q} :s and the \tilde{g} . These states have no influence on DM, g-2, naturalness, ...
- Ie. : The reason that CMSSM is dead is the *irrelevant part*!
- So: Remove connection (1:st & 2:nd gen q̃:s and the g̃) ↔ (3:d gen. q̃:s and EW-sector). Price: more free parameters.
- And:If spectrum is compressed: Long decay-cascades @ LHC, ending up at a NLSP→LSP + visible with soft spectrum.
- Ie.: NOT a large missing E_T model, NOR a simplified one ⇒ weaker limits.

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent: At least the NLSP has 100 % BR to the LSP !
- Eg. τ₁ NLSP (minimal σ) (M.B. arXiv:1308.1461)
- Cf. LHC+LEP

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent: At least the NLSP has 100 % BR to the LSP !
- Eg. τ̃₁ NLSP (minimal σ) (м.в. arXiv:1308.1461)
- Of. LHC+LEP

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent: At least the NLSP has 100 % BR to the LSP !
- Eg. τ̃₁ NLSP (minimal σ) (M.B. arXiv:1308.1461)
- Of. LHC+LEP

4 A N

- E

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent: At least the NLSP has 100 % BR to the LSP !
- Eg. τ̃₁ NLSP (minimal σ) (м.в. arXiv:1308.1461)
- Cf. LHC+LEP , HiLumi LHC

4 A N

3 > 4 3

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent: At least the NLSP has 100 % BR to the LSP !
- Eg. τ̃₁ NLSP (minimal σ) (м.в. arXiv:1308.1461)
- Cf. LHC+LEP , HiLumi LHC

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent: At least the NLSP has 100 % BR to the LSP !
- Eg. τ̃₁ NLSP (minimal σ) (м.в. arXiv:1308.1461)
- Cf. LHC+LEP , HiLumi LHC, ILC500

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent: At least the NLSP has 100 % BR to the LSP !
- Eg. τ̃₁ NLSP (minimal σ) (м.в. arXiv:1308.1461)
- Cf. LHC+LEP , HiLumi LHC, ILC500 and ILC1000

Why compressed spectra ? Global fits

Because it fits the observations best !

pMSSM10 prediction: best-fit masses

- \Rightarrow high colored masses
- \Rightarrow relatively low electroweak masses
 - partially with not too large ranges
- \Rightarrow clear prediction for ILC and CLIC

Sven Heinemeyer, LCWS15, Whistler, 03.11.2015

ICHEP 2016++ 10 / 22

< (17) × <

Zoomed STCx mass-spectrum

< ロ > < 同 > < 回 > < 回 >

Cross-sections

< ロ > < 同 > < 回 > < 回 >

Cross-sections

э

・ロン ・四 ・ ・ ヨン ・ ヨン

Cross-sections

\Rightarrow At the ILC@500 GeV:

🚊 Signal:

- Typically : a few leptons + LSP:s \Rightarrow
 - Low multiplicity events.
 - Central, much missing energy.
- Cross-sections up to 1 pb+.
- Often cascades over τ
 [˜]₁.
- $\Delta(M) \sim 10 \text{ GeV} \Rightarrow E_{ au} \in [2.3, 45.5] \text{ GeV}.$

Background:

- Real missing energy = $ZZ, WW \rightarrow \ell\ell\nu\nu$
- Fake missing energy = $\gamma\gamma$ processes, ISR, single IVB.

э

Cross-sections

\Rightarrow At the ILC@500 GeV:

^{ອຼ}ິຣ Signal:

- Typically : a few leptons + LSP:s \Rightarrow
 - Low multiplicity events.
 - Central, much missing energy.
- Cross-sections up to 1 pb+.
- Often cascades over
 [~]₁.
- $\Delta(M) \sim$ 10 GeV $\Rightarrow E_{\tau} \in [2.3, 45.5]$ GeV.

Background:

- Real missing energy = ZZ, $WW \rightarrow \ell\ell\nu\nu$
- Fake missing energy = $\gamma\gamma$ processes, ISR, single IVB.

э
Planck: Cosmological abundance from CMB: Δ=2 %.

Accelerator:

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\tilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

 Planck: Cosmological abundance from CMB: Δ=2 %.

Accelerator:

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\tilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

A (10) A (10) A (10)

 Planck: Cosmological abundance from CMB: Δ=2 %.

Accelerator:

- Relic abundance using micrOMEGAs:
- \Rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_1^0}$ changes abundance by 5 %.
- \Rightarrow 1% variation of $\theta_{\tilde{\tau}}$ or N_{11} changes abundance by 1% and 3.5 %, respectively.
- Much less sensitive to other masses/mixings.
- See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

A (10) A (10) A (10)

Planck: Cosmological abundance from CMB: $\Lambda = 2 \%$

1.05

1.1

 Ω/Ω_{true}

Accelerator:

Relic abundance using micrOMEGAs:

• \rightarrow 1% variation of $M_{\tilde{\tau}}$ or $M_{\tilde{\chi}_{1}^{0}}$ Orr So: 0.14 Ice by 5 %. To match Planck, need per mil LSP and $\theta_{\widetilde{\tau}}$ or N_{11} NLSP masses, percent LSP and NLSP ce by 1% 0.08 mixings ! ctively. 0.06 0.04 Much less sensitive to other 0.02 masses/mixings.

> See S.-L. Lehtinen in LCWS15/arXiv:1602.08439.

> > < 6 b

0.95

0.12

0.

How to reach the needed precision?

Look at pair-production

•
$$E'_{\substack{max \ min}} = rac{E_{Beam}}{2} \left(1 - \left(rac{M_{\tilde{\chi}_1^0}}{M_{\tilde{\ell}}} \right)^2
ight) \left(1 \pm \sqrt{1 - \left(rac{M_{\tilde{\ell}}}{E_{Beam}} \right)^2}
ight)$$

- Two observables(E'_{max}) and two parameters ($M_{\tilde{\ell}}$ and $M_{\tilde{\chi}_1^0}$).
- For \tilde{e}_R and $\tilde{\mu}_R$, E'_{max}_{min} can be measured very well at the ILC.
- E'_{max} can be well measured for $\tilde{\tau}_1$
- \Rightarrow Use \tilde{e}_R and $\tilde{\mu}_R$ to determine $M_{\tilde{\chi}_1^0}$, end-point of $E_{\tau-jet}$ for $M_{\tilde{\tau}_1}$.

< 回 > < 三 > < 三 >

STC4 sleptons @ 500 GeV: $\tilde{e}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...

STC4 sleptons @ 500 GeV: $\tilde{e}, \tilde{\mu}$

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$

Selections for $\tilde{\tau}_1$:

- Correct charge.
- P_T wrt. beam and one τ wrt the other.
- $M_{jet} < M_{ au}$
- $E_{vis} < 120 \text{ GeV}, M_{vis} \in [20, 87] \text{ GeV}.$
- Cuts on polar angle and angle between leptons.
- Little energy below 30 deg, or not in *τ*-jet.
- At least one τ -jet should be hadronic.
- Anti- $\gamma\gamma$ likelihood.

Fitting the $\tilde{\tau}$ end-points

- Only the upper end-point is relevant.
- Background subtraction:
 - Important SUSY background,but region above 45 GeV is signal free.
 Fit exponential and extrapolate.
- Fit line to (data-background fit).

Fitting the $\tilde{\tau}$ end-points

- Only the upper end-point is relevant. >
- Background subtraction:
 - Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background fit).

Results for $\tilde{\tau}_1$

 $E_{max,\tilde{\tau}_1} = 44.49^{+0.11}_{-0.09} \text{GeV}$ Translates to an error on the mass of 0.27 GeV/ c^2 , dominated by the error from $M_{\tilde{\chi}_1^0}$.

A (10) > A (10) > A (10)

Fitting the $\tilde{\tau}$ end-points

A (10) A (10) A (10)

- $\theta_{\tilde{\tau}}$: Several options:
 - Absoulute Cross-section: σ_{τ̃} = A(θ_{τ̃}, P_{beam}) × β³/s: Once M_{τ̃} (and E_{CM}) is known only depends on θ_{τ̃} (through A: complicated, but known).
 - Cross-section difference for RL and LR beams: The function *A* also depends on beam-polarisation.
 - Percent-level measurement likely: mainly a cross-section measurement.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Cross-section, but how to measure ? Mono-photon search?
 - However, cross-section also depends on other elements of the neutralino-matrix, and on M₆
 - Cross-sections for \$\tilde{\car{\chi}_1^0} \tilde{\car{\chi}_2^0} / \$\tilde{\car{\chi}_2^0} + beam-polarisation+ t/s-channel separation from angular distributions.
 - BR:s in cascades when direct decay to SM+X⁰₁ is substantial?
 - ...
 - Is percent-level measurement possible ? Work in progress...

- $\theta_{\tilde{\tau}}$: Several options:
 - Absoulute Cross-section: σ_{τ̃} = A(θ_{τ̃}, P_{beam}) × β³/s: Once M_{τ̃} (and E_{CM}) is known only depends on θ_{τ̃} (through A: complicated, but known).
 - Cross-section difference for RL and LR beams: The function *A* also depends on beam-polarisation.
 - Percent-level measurement likely: mainly a cross-section measurement.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Cross-section, but how to measure ? Mono-photon search?
 - However, cross-section also depends on other elements of the neutralino-matrix, and on M_e
 - Cross-sections for X₁⁰X₂⁰X₂⁰X₂⁰X₂⁰+beam-polarisation+ t/s-channel separation from angular distributions.
 - BR:s in cascades when direct decay to SM+X⁰₁ is substantial?
 - 0 ...
 - Is percent-level measurement possible ? Work in progress...

- $\theta_{\tilde{\tau}}$: Several options:
 - Absoulute Cross-section: σ_{τ̃} = A(θ_{τ̃}, P_{beam}) × β³/s: Once M_{τ̃} (and E_{CM}) is known only depends on θ_{τ̃} (through A: complicated, but known).
 - Cross-section difference for RL and LR beams: The function *A* also depends on beam-polarisation.
 - Percent-level measurement likely: mainly a cross-section measurement.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Cross-section, but how to measure ? Mono-photon search?
 - However, cross-section also depends on other elements of the neutralino-matrix, and on M_e
 - Cross-sections for
 ⁰₁
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰
 ⁰₂
 ⁰
 ⁰
 - BR:s in cascades when direct decay to SM+ $\tilde{\chi}_1^0$ is substantial?
 - ...
 - Is percent-level measurement possible ? Work in progress...

- $\theta_{\tilde{\tau}}$: Several options:
 - Absoulute Cross-section: σ_{τ̃} = A(θ_{τ̃}, P_{beam}) × β³/s: Once M_{τ̃} (and E_{CM}) is known only depends on θ_{τ̃} (through A: complicated, but known).
 - Cross-section difference for RL and LR beams: The function *A* also depends on beam-polarisation.
 - Percent-level measurement likely: mainly a cross-section measurement.
- N_{11} (bino-ness of $\tilde{\chi}_1^0$):
 - Cross-section, but how to measure ? Mono-photon search?
 - However, cross-section also depends on other elements of the neutralino-matrix, and on M_e
 - Cross-sections for
 ⁰₁
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰₂
 ⁰
 ⁰₂
 ⁰
 ⁰
 - BR:s in cascades when direct decay to SM+ $\tilde{\chi}_1^0$ is substantial?
 - ...
 - Is percent-level measurement possible ? Work in progress...

SM background from FullSim

- Technical: Code to fill SGV structures from LCIO-DST.
- $\bullet \Rightarrow$ Can use exactly the same code to analyse SGV or FullSim.
- But: all main backgrounds ($\gamma\gamma$ and $e\gamma$) have far too low stat in FullSim to be useful.
- So it's mainly a poof of principle (FullSim analysed within SGV).
- However: $WW \rightarrow \ell \nu \ell \nu$ is quit signal-like, so allows for studies of "signal" in FullSim (overlay!) \Rightarrow mod's to analysis due to this.
- Already produced new ntups with overlay-mitigation procedure.
- Analysis just started: Efficiency is un-changed, but need some work on (signal-like) γγ background: Need not only reject overlay-like part of the event, but also look at *what* was rejected.
- Also: Further work on bosino-sector.

3

SM background from FullSim

- Technical: Code to fill SGV structures from LCIO-DST.
- \Rightarrow Can use exactly the same code to analyse SGV or FullSim.
- But: all main backgrounds ($\gamma\gamma$ and $e\gamma$) have far too low stat in FullSim to be useful.
- So it's mainly a poof of principle (FullSim analysed within SGV).
- However: $WW \rightarrow \ell \nu \ell \nu$ is quit signal-like, so allows for studies of "signal" in FullSim (overlay!) \Rightarrow mod's to analysis due to this.
- Already produced new ntups with overlay-mitigation procedure.
- Analysis just started: Efficiency is un-changed, but need some work on (signal-like) γγ background: Need not only reject overlay-like part of the event, but also look at *what* was rejected.
- Also: Further work on bosino-sector.

-

SM background from FullSim

- Technical: Code to fill SGV structures from LCIO-DST.
- \Rightarrow Can use exactly the same code to analyse SGV or FullSim.
- But: all main backgrounds ($\gamma\gamma$ and $e\gamma$) have far too low stat in FullSim to be useful.
- So it's mainly a poof of principle (FullSim analysed within SGV).
- However: WW → ℓνℓν is quit signal-like, so allows for studies of "signal" in FullSim (overlay!) ⇒ mod's to analysis due to this.
- Already produced new ntups with overlay-mitigation procedure.
- Analysis just started: Efficiency is un-changed, but need some work on (signal-like) γγ background: Need not only reject overlay-like part of the event, but also look at *what* was rejected.
- Also: Further work on bosino-sector.

-

SM background from FullSim

- Technical: Code to fill SGV structures from LCIO-DST.
- \Rightarrow Can use exactly the same code to analyse SGV or FullSim.
- But: all main backgrounds ($\gamma\gamma$ and $e\gamma$) have far too low stat in FullSim to be useful.
- So it's mainly a poof of principle (FullSim analysed within SGV).
- However: WW → ℓνℓν is quit signal-like, so allows for studies of "signal" in FullSim (overlay!) ⇒ mod's to analysis due to this.
- Already produced new ntups with overlay-mitigation procedure.
- Analysis just started: Efficiency is un-changed, but need some work on (signal-like) $\gamma\gamma$ background: Need not only reject overlay-like part of the event, but also look at *what* was rejected.
- Also: Further work on bosino-sector.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SM background from FullSim

- Technical: Code to fill SGV structures from LCIO-DST.
- \Rightarrow Can use exactly the same code to analyse SGV or FullSim.
- But: all main backgrounds ($\gamma\gamma$ and $e\gamma$) have far too low stat in FullSim to be useful.
- So it's mainly a poof of principle (FullSim analysed within SGV).
- However: WW → ℓνℓν is quit signal-like, so allows for studies of "signal" in FullSim (overlay!) ⇒ mod's to analysis due to this.
- Already produced new ntups with overlay-mitigation procedure.
- Analysis just started: Efficiency is un-changed, but need some work on (signal-like) $\gamma\gamma$ background: Need not only reject overlay-like part of the event, but also look at *what* was rejected.
- Also: Further work on bosino-sector.

3

イロト イ団ト イヨト イヨト

News since ICHEP: Neutralino mixing

Summer-student project (Colm Murphy from UCL):

- Find trajectory in parameter-space where *N*₁₁ changes significantly between points.
- Find observables that are sensitive:
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ polarised cross-sections.
 - $\tilde{\chi}_1^{\pm}$ decay BR:s.
 - A_{FB} in $\tilde{\chi}_1^{\pm}$ decays.
- Clearly, things correlate (Bino-, Wino- Higgsino-ness of both neutralino(s) and chargino): Input of experimental data on the above to Fittino ⇔ input of N₁₁ measurement.

イロト 不得 トイヨト イヨト 二日

Introductio

Method ○●○ Results

Conclusion

Finding points where N_{11} changes

Colm Murphy | Determining neutralino mixing properties | September 5, 2016 | 10/18

News since ICHEP: Neutralino mixing

Summer-student project (Colm Murphy from UCL):

- Find trajectory in parameter-space where *N*₁₁ changes significantly between points.
- Find observables that are sensitive:
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ polarised cross-sections.
 - $\tilde{\chi}_1^{\pm}$ decay BR:s.
 - A_{FB} in $\tilde{\chi}_1^{\pm}$ decays.
- Clearly, things correlate (Bino-, Wino- Higgsino-ness of both neutralino(s) and chargino): Input of experimental data on the above to Fittino ⇔ input of N₁₁ measurement.

Colm Murphy | Determining neutralino mixing properties | September 5, 2016 | 13/18

Outline

ntroduction

Method

Results

Conclusion

${ ilde \chi}_1^\pm$ decay BR vs. neutralino mixing

Colm Murphy | Determining neutralino mixing properties | September 5, 2016 | 15/18

Charge of decay product $Q \times cos(\theta)$ vs. neutralino mixing

Colm Murphy | Determining neutralino mixing properties | September 5, 2016 | 17/18

News since ICHEP: Neutralino mixing

Summer-student project (Colm Murphy from UCL):

- Find trajectory in parameter-space where *N*₁₁ changes significantly between points.
- Find observables that are sensitive:
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ polarised cross-sections.
 - $\tilde{\chi}_1^{\pm}$ decay BR:s.
 - A_{FB} in $\tilde{\chi}_1^{\pm}$ decays.
- Clearly, things correlate (Bino-, Wino- Higgsino-ness of both neutralino(s) and chargino): Input of experimental data on the above to Fittino ⇔ input of N₁₁ measurement.

News since ICHEP: Neutralino mixing

Summer-student project (Colm Murphy from UCL):

- Find trajectory in parameter-space where *N*₁₁ changes significantly between points.
- Find observables that are sensitive:
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ polarised cross-sections.
 - $\tilde{\chi}_1^{\pm}$ decay BR:s.
 - A_{FB} in $\tilde{\chi}_1^{\pm}$ decays.
- Clearly, things correlate (Bino-, Wino- Higgsino-ness of both neutralino(s) and chargino): Input of experimental data on the above to Fittino ⇔ input of N₁₁ measurement.

News since ICHEP: \tilde{e}_R edges with edge-filter

Different approach on edge-extraction for \tilde{e}_R : Gaussian filter from S. Caiazza:

- Different analysis from the beginning. Compares well with standard (*bémol*: γγ is not yet understood)
- Optimise filter parameters for best performance
- Comparison w/ standard analysis on mass-precision coming soon.

→ ∃ → < ∃ →</p>

News since ICHEP: \tilde{e}_R edges with edge-filter

Different approach on edge-extraction for \tilde{e}_R : Gaussian filter from S. Caiazza: P_m_Localization Error @ 500 fb¹

- Different analysis from the beginning. Compares well with standard (*bémol*: γγ is not yet understood)
- Optimise filter parameters for best performance
- Comparison w/ standard analysis on mass-precision coming soon.

At ILC:

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Likely that LHC would discover such a model in the next few years, if it is there.
- In such models a rich spectrum is reachable by the ILC, and ILC will be able to corroborate on LHC discovery.
- In particular, ILC will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to Planck's CMB results.

Mikael Berggren (DESY)

SUSY models and DM at ILC

At ILC:

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Likely that LHC would discover such a model in the next few years, if it is there.
- In such models a rich spectrum is reachable by the ILC, and ILC will be able to corroborate on LHC discovery.
- In particular, ILC will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to Planck's CMB results.

Mikael Berggren (DESY)

SUSY models and DM at ILC

At ILC:

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Likely that LHC would discover such a model in the next few years, if it is there.
- In such models a rich spectrum is reachable by the ILC, and ILC will be able to corroborate on LHC discovery.
- In particular, ILC will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to Planck's CMB results.

Mikael Berggren (DESY)

SUSY models and DM at ILC

ICHEP 2016++ 22 / 22

At ILC:

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Likely that LHC would discover such a model in the next few years, if it is there.
- In such models a rich spectrum is reachable by the ILC, and ILC will be able to corroborate on LHC discovery.
- In particular, ILC will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to Planck's CMB results.

Mikael Berggren (DESY)

SUSY models and DM at ILC

At ILC:

- SUSY models with a rich and compressed spectrum are still the best fit to data.
- They are not excluded by LHC (although the mSUGRA version of it is).
- Likely that LHC would discover such a model in the next few years, if it is there.
- In such models a rich spectrum is reachable by the ILC, and ILC will be able to corroborate on LHC discovery.
- In particular, ILC will be able to prove that the NP discovered at LHC is SUSY. Masses will be determined at per mil-level, mixings (probably) at percent-level.
- With such precisions, ILC will be capable to measure DM with a precision close to Planck's CMB results.

Mikael Berggren (DESY)

SUSY models and DM at ILC

ICHEP 2016++ 22 / 22

Thank You !
BACKUP

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two τ:s + nothing (like [˜]-pairs)
- However: Cascade decay, meaning that the two *τ*:s have different spectra ⇒ can often select first and second decay unambiguously
- The τ from $\tilde{\tau} \to \tau \tilde{\chi}_1^0$ decay ...
- ... and from $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau$
- Endpoint of first decay: Δ = 1.6 GeV
 ⇒ Δ(M_{χ̃2}) = ??? MeV, assuming the
 error on M_{τ̃1} from the previous slide.

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two τ :s + nothing (like
- However: Cascade decay, meaning decay unambiguously
- The τ from $\tilde{\tau} \to \tau \tilde{\chi}_1^0$ decay ...
- ... and from $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau$
- Endpoint of first decay: $\Delta = 1.6 \text{ GeV}$

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two *τ*:s + nothing (like *τ̃*-pairs)
- However: Cascade decay, meaning that the two *τ*:s have different spectra ⇒ can often select first and second decay unambiguously
- The τ from $\tilde{\tau} \to \tau \tilde{\chi}_1^0$ decay ...
- ... and from $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau$
- Endpoint of first decay: Δ = 1.6 GeV ⇒ Δ(M_{χ̃₂}) = ??? MeV, assuming the error on M_{τ̃₁} from the previous slide.

STC4 bosinos @ 500 GeV: $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau \tilde{\chi}_1^0$

- Signature : two *τ*:s + nothing (like *τ̃*-pairs)
- However: Cascade decay, meaning that the two *τ*:s have different spectra
 ⇒ can often select first and second decay unambiguously
- The τ from $\tilde{\tau} \to \tau \tilde{\chi}_1^0$ decay ...
- ... and from $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau$
- Endpoint of first decay: $\Delta = 1.6 \text{ GeV}$ $\Rightarrow \Delta(M_{\tilde{\chi}_2^0}) = ??? \text{ MeV}$, assuming the error on $M_{\tilde{\tau}_1}$ from the previous slide.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

Conclusions

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate ^χ[±]₁ from ^χ⁰₂: Either semi-leptonic f.s.: Only ^χ[±]₁, or γ: only ^χ⁰₂.
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

Conclusions

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to ~ 100 MeV.

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

Conclusions

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

- STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^{\pm} > \tilde{\chi}_k^{\pm} \tilde{\chi}_l^{\pm} > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{t}}$ and $M_{\tilde{t}\tilde{t}}$ is 200 GeV higher in STC10

ightarrow Cross-sections for ${
m \widetilde{t}\widetilde{t}}$ and ${
m \widetilde{b}\widetilde{b}}$ 5 imes smaller in STC10 wrt STC8.

• $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (*Z*, *W* or *h*).

• For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).

• For $\tilde{\chi}^{\pm}$ the rest is other leptons.

- The *τ*:s mostly come from *τ˜*₁ → *τ χ˜*₀⁰, where the mass difference is only 10 GeV⇒ little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{\pm} > \tilde{\chi}_{k}^{\pm}\tilde{\chi}_{l}^{\pm} > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{0} > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

 \rightarrow Cross-sections for $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$ 5 \times smaller in STC10 wrt STC8.

• $\tilde{\chi}$ cascade-decays to τ :s + the LSP in 75 % of the cases, often together with a boson (*Z*, *W* or *h*).

For x̃⁰, the rest is either only bosons, or "nothing" (ie. neutrinos).
 For x[±] the rest is other leptons

- The *τ*:s mostly come from *τ*₁ → *τχ*₀⁰, where the mass difference is only 10 GeV⇒ little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{\pm} > \tilde{\chi}_{k}^{\pm}\tilde{\chi}_{l}^{\pm} > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}t > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_{k}^{0}\tilde{\chi}_{l}^{0} > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}_1^0$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

- STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).
- Main features at LHC 14 TeV:
 - Cross-sections:

• $\tilde{\chi}_k^0 \tilde{\chi}_l^\pm > \tilde{\chi}_k^\pm \tilde{\chi}_l^\pm > \tilde{\tau}\tilde{\tau} > \tilde{\ell}\tilde{\ell} > \tilde{t}\tilde{t} > \tilde{b}\tilde{b} > \tilde{q}\tilde{q} > \tilde{\chi}_k^0 \tilde{\chi}_l^0 > \tilde{g}\tilde{g}$ ranging from 1.5 pb to 1 fb. $M_{\tilde{f}}$ and $M_{\tilde{b}}$ is 200 GeV higher in STC10

- - For $\tilde{\chi}^0$, the rest is either only bosons, or "nothing" (ie. neutrinos).
 - For $\tilde{\chi}^{\pm}$ the rest is other leptons.
- The τ :s mostly come from $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_0^0$, where the mass difference is only 10 GeV \Rightarrow little missing energy.
- \tilde{b} mostly decays to $b\tilde{\chi}^0$: > 50 % to $b\tilde{\chi}^0_1$. But also to $t\tilde{\chi}^{\pm}$ (20%)
- \tilde{t} always goes to $t\tilde{\chi}^0$, but rarely to $t\tilde{\chi}^0_1$ (~ 10%).
- The right-handed gen1 and 2 squarks almost always decay directly to quark+LSP.

 STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).

$\Rightarrow \text{LHC expectations}$

- Despite the high cross-section, the low amount of missing *E_T* and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing *E_T* will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.
 - The right-handed genT and ∠ squarks almost always decay directly to quark+LSP.

 STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).

$\Rightarrow \text{LHC expectations}$

- Despite the high cross-section, the low amount of missing *E_T* and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing *E_T* will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.
 - The right-handed genT and ∠ squarks almost always_decay directly.
 to quark+LSP.

 STC8 and STC10 studied by I. Meltzer-Pullmans group at DESY with fastsim (Delphes).

$\Rightarrow \text{LHC expectations}$

- Despite the high cross-section, the low amount of missing *E_T* and the long decay chains will make direct bosino and slepton observations hard.
- The simple decay-chains and very high missing *E_T* will make firstand second-generation squark production easy to detect.
 However, the cross-section is so low that it is still challenging.
- Third generation squark production constitute a good compromise between cross-section and visibility, and will be the most powerful discovery channel. The lower cross-section in STC10 is compensated by higher visibility.
 - The right-handed genT and ∠ squarks almost always decay directly to quark+LSP.

Observables:

Observable	Gives	lf
Edges (or average and		not too far from
width)	Masses	threshold
Shape of spectrum	Spin	
Angular distributions	Mass, Spin	
Invariant mass distributions		
from full reconstruction	Mass	cascade decays
Angular distributions from		
full reconstruction	Spin, CP,	masses known
Un-polarised Cross-section		
in continuum	Mass, coupling	
Polarised Cross-section	Mass, coupling,	
in continuum	mixing	
Decay product polarisation	Mixing	$\tilde{\tau}$ decays
Threshold-scan	Mass(es), Spin	