LC calorimetry: recent developments in simulation, reconstruction & optimisation

Katja Krüger ILC project meeting, 11 November 2016

- high granularity calorimetry is a key component for all linear collider detectors to reach required jet energy resolution by applying Particle Flow Algorithms
- > unprecedented granularity leads to new challenges:
 - for building such detectors
 - for modeling of the detector response
 - for modeling of hadronic showers
- unprecedented granularity leads to new opportunities
 - optimum use of the detailed shower information in the reconstruction (software compensation)
 - interplay of reconstruction algorithms with detector optimisation

Calorimeter Prototypes

Calorimeter Technologies for Linear Collider detectors

Electromagnetic Calorimeter

Silicon

1024 pixel

SiD

ILD option SiECAL

Scintillator

ILD option SciECAL

Katja Krüger | LC calorimetry | 11 November 2016 | Page 5 / 26

Hadronic Calorimeter

- Scintillator tiles read out by SiPMs
- > 3*3 cm² tiles
- readout: 12 bit (analog)
- ILD option SiD
 - **AHCAL**

- Resistive Plate Chamber: local gas amplification between 2 glass plates with high voltage
- > 1*1 cm² readout pads
- readout: 1 bit (digital)
- > SiD alternative

- readout: 2 bit (semi-digital)
- > ILD option

DHCAL

SDHCAL

Modeling of the detector response

Modelling of the detector response

use particles with well-known detector response to tune the simulation
 muons for the response to single particles

- electrons for the response to dense showers
- > check different aspects of the simulation
 - materials described correctly?

digitisation effects:

- SiPM saturation due to limited number of pixels
- charge spreading in avalanches in gas
- time cuts (integration time of electronics)
- > scintillator well known as sensitive material in calorimeters
- > RPCs are not sensitive to average dE/dx, but to the number of points of ionisation → tests different aspect of simulation than scintillator

RPC digitisation

many aspects of the RPCs are modelled in the digitisation step

- > measured charge Q_{tot} given by initial charge q_0 and measured RPCs induced charge spectrum q_{ind} (depends on HV, gas pressure, ...)
- > overlapping avalanches will screen each other
- > avalanche will spread the charge over several readout pads
- readout pads have a threshold T

very sensitive to number and position of the energy deposition in the simulation

DHCAL and SDHCAL were operated in different conditions, so individual tuning is necessary

DHCAL comparison to simulation

- simulation tuned with muons and electrons
- > DHCAL configuration without absorber: detailed shower profiles

JINST 11 (2016) P05008

DHCAL comparison to simulation

C. Neubüser PhD thesis

simulation tuned with muons and electrons
very sensitive to step width in simulation

DHCAL comparison to simulation

- simulation tuned with muons and electrons
- > pion shower shapes rather well described, response at large energies slightly underestimated

SDHCAL comparison to simulation

- > simulation tuned with muons and electrons
- leads to reasonable description of pion showers, response at large energies slightly underestimated

JINST 11 (2016) P06014

Combined scintillator calorimeter system

- in a real calorimeter system, hadrons are not measured purely in HCAL, but in ECAL + HCAL (+tailcatcher)
- ECAL and HCAL typically have different absorber, sampling ratio, active material
- combined system of scintillator-tungsten ECAL + scintillator-steel AHCAL well described in simulation

CAN-056

Combined scintillator calorimeter system

- in a real calorimeter system, hadrons are not measured purely in HCAL, but in ECAL + HCAL (+tailcatcher)
- ECAL and HCAL typically have different absorber, sampling ratio, active material
- combined system of scintillator-tungsten ECAL + scintillator-steel AHCAL has very similar performance to AHCAL alone

DES

Modeling of hadronic showers

Hadronic Showers in the SiECAL

very fine SiECAL granularity allows very detailed studies of hadron shower topology

characterisation of interaction region of hadronic showers

Katja Krüger | LC calorimetry | 11 November 2016 | Page 17 / 26

Hadronic Showers in the SiECAL

very fine SiECAL granularity allows very detailed studies of hadron shower topology

characterisation of interaction region of hadronic showers

Hadronic Showers and Particle Flow Algorithms

- Particle Flow Algorithms are very sensitive to shower shapes
- test of PandoraPFA cluster separation with AHCAL pion shower data:
 - map measured AHCAL test beam pion showers onto ILD geometry
 - test shower separation of a "neutral" hadron (initial track segment removed) of 10 GeV and a charged hadron of 10 or 30 GeV
- > good shower energy reconstruction for distances larger than 10 cm
- > good description by simulation

Hadronic Showers and Particle Flow Algorithms

- > ArborPFA: particle flow algorithm using the tree-like structure of showers
- test of cluster separation with SDHCAL pion shower data
 - overlay of 2 pion events: 10 GeV "neutral" particle (initial track segment removed) and charged hadron with 10 – 50 GeV at 5 – 30 cm distance
- > good efficiency and purity to assign hits to the neutral cluster for distances of 10 cm or more
- > important to verify this in simulation!

Reconstruction Algorithms and Detector Optimisation

Reconstruction Algorithms

- > the 3 HCAL concepts differ in several aspects
 - granularity
 - energy reconstruction method
 - active medium
- all of them influence the energy resolution for single particles and jets
- > AHCAL data have been tested with different reconstruction methods
 - analogue summing of is not the best method
 - reconstruction methods that apply weights (semi-digital, software compensation) are better
- results for single particles, need to check with Particle Flow Algorithms applied to jets

Reconstruction Algorithms

all reconstruction methods described within ~5% in simulation

CAN-049a

Software Compensation in PandoraPFA

- two steps where software compensation can help
 - during re-clustering (comparison of track and cluster energy for charged particles)
 - in the reconstruction of the energy of neutral hadrons

- both steps are equally important
 - neutral hadrons important for intrinsic energy resolution
 - re-clustering important to reduce confusion between clusters of neutral and charged hadrons
- effect of software compensation might depend on granularity, so need to check choice of 3*3 cm² cell size
- consider software compensation in detector optimisation

Software Compensation and ILD Detector Optimisation

 > software compensation improves jet energy resolution for all cell sizes and all jet energies in a similar way → 3*3 cm² cell size still reasonable
 > need to re-check for other detector sizes

Summary

- high granularity of calorimeters leads to new challenges and new opportunities
- simulation
 - tuned digitisation for RPC testbeam prototypes now available
 - validation of Particle Flow Algorithm performance needed
 - ILD SDHCAL simulation should be validated against the testbeam data
- reconstruction algorithms and detector optimisation
 - for AHCAL: software compensation important to reach best energy resolution for single particles and for jets
 - choice of cell size of 3*3 cm² for ILD AHCAL reasonable also with software compensation, needs to be re-checked for other detector size

Backup

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- > goal: distinguish the decays Z → jet jet and W → jet jet by their reconstructed mass
- Required resolution: σ(E_{jet})/E_{jet} ≈ 3-4% for E_{jet} ≈ 40 to 500 GeV
- > "typical" calorimeter: $\sigma(E_{jet})/E_{jet} \approx 60\%/\sqrt{E(GeV)} \oplus 2\%$ $\Rightarrow \sigma(E_{jet})/E_{jet} \approx 10\%$ at $E_{jet} = 50$ GeV
- promising solution:
 Particle
 Flow
 Algorithms

Particle Flow Algorithm

> Idea:

for each individual particle in a jet, use the detector part with the best energy resolution

from: M.A. Thomson, Nucl.Instrum.Meth. A611 (2009) 25

- "typical" jet:
 - ~ 62% charged particles
 - ~ 27% photons
 - ~ 10% neutral hadrons

~ 1% neutrinos

tracking EM calorimeter HAD calorimeter $(\sigma_{jet})^{2}$ $\approx 0.62 (\sigma_{tracks})^{2}$ $+ 0.27 (\sigma_{EMCalo})^{2}$ $+ 0.10 (\sigma_{HADCalo})^{2}$ $+ (\sigma_{loss})^{2} + (\sigma_{confusion})^{2}$

Jet Energy Resolution

- > PFA resolution is clearly better than calorimeter alone
- > correct association between tracks and calorimeter clusters is very important ⇒ "imaging" calorimeter with very high granularity

DES

Comparison to Simulation: AHCAL

- > description of linearity, resolution and shower shapes shown in many publications
- studies of hadronic shower models ("physics lists") in GEANT
- recently: show agreement of physics prototype data, prototype simulation and ILD simulation

Highly granular calorimeters beyond LC: CMS endcap

CMS recently decided to chose High Granularity Calorimeter (HGC) as concept for the upgrade of the calorimeter endcap for HL-LHC (2025)

> Electromagnetic Calorimeter

- 30 layers of lead/copper absorber
- 25 X0
- 420 m² silicon pad sensors
- 3.7 M channels

Front Hadronic Calorimeter

- 12 layers of brass absorber
- 4 interaction lengths
- 250 m² silicon pad sensors
- 1.4 M channels

> Backing calorimeter

- 10 layers
- 5 interaction lengths
- lower radiation level allows use of scintillator or MPGDs

high radiation dose \rightarrow rad. hard silicon \rightarrow keep silicon at -35°C

Highly granular calorimeters beyond LC: CMS endcap

hexagonal sensors

