

BSM search using Higgs to invisible decay at the ILC

Yu Kato,

Jacqueline Yan(KEK), Junping Tian, Satoru Yamashita The University of Tokyo

ILD Analysis/Software Meeting Nov. 30, 2016

Motivation

2016/11/30 @ILD A/S Meeting

Setting & Flow of analysis

Setting

- Generator: WHIZARD 1.95
- Samples: DBD sample + Dirac sample ($e^+e^- \rightarrow qqH$, $H \rightarrow ZZ^* \rightarrow 4\nu$)
- Detector: the ILD full simulation
- $E_{cm} = 250 \text{ GeV}, \ \int Ldt = 250 \text{ fb}^{-1}, (P_{e^{-}}, P_{e^{+}}) = (-0.8, +0.3), (+0.8, -0.3)$
- Flow of analysis
 - \circ Isolated lepton tagging \rightarrow veto
 - Jet clustering
 - 1. remove gamma-gamma overlay from particle flow objects (PandoraPFA) by using kt algorithm jet clustering
 - 2. forced 2-jet reconstruction using LCFIPlus
 - Event selection (mention next page)
 - assume BR(H→invisible)=10%
 - Fit & Toy Monte Carlo to set upper limit

Event Selection

- 1. Isolated lepton veto
- 2. Loose restriction of transverse di-jet momentum, di-jet invariant mass, and recoil mass from di-jet
- 3. Number of particle flow objects(PFO) and charged tracks: N_{pfo}, N_{track}
- 4. Transverse di-jet (Z) momentum: Pt_Z
- 5. Invariant mass of di-jet (Z mass):M_Z
- 6. Polar angle of di-jet (Z) direction: θ_Z
- 7. Acoplanarity angle: $\varphi = \pi (\phi_1 \phi_2)$ (ϕ_i : transverse direction angle of jet)
- 8. Recoil mass: M_{recoil}
- 9. Boosted Decision Tree(BDT) method selection (multi-variate analysis)

Recoil Mass Plots [Ecm = 250 GeV, 250 fb⁻¹, BR(H->inv.)=10%]

bin width:2.0 GeV bkg : all fixed

Toy Monte Carlo to set upper limit

Summary & Plans

Use the measurement of BR(H $\rightarrow inv$.) as a means for indirect BSM search

- Motivation
 - set upper limit (UL) on BR(H $\rightarrow inv$.)
 - develop analysis method to achieve high sensitivity
 - compare between alternative polarization
 - $^{\rm o}$ study is based on full ILD detector simulation, at E_{cm} = 250 GeV, assuming 250 fb^{-1}

Status

- optimized data selection methods
- set UL using toy MC for both left and right scenario

	Left polarization	Right polarization
UL of BR [%] (95%CL)	2.12	1.47

Plan

- improve sensitivity through further optimization of analysis methods and jet energy resolution
- $\circ\,$ analysis at E_{cm} = 350, 500 GeV, compare between different scenarios --> contribute to optimization of ILC run scenario
- study systematic errors

Back Up

2016/11/30 @ILD A/S Meeting BSM search using Higgs to invisible decay

Recoil Mass Method

●We can measure Higgs without directly looking at it
→ model independent

$$M_{rec}^2 = (\sqrt{s} - E_Z)^2 - |\vec{p}_Z|^2$$

• Higgs-strahlung cross section can be obtained using the leptonic decay of Z

$$\sigma_{\rm ZH} = \frac{N_S}{BR(\rm Z \to l^+l^-)\epsilon_S L}$$

 ϵ_S : signal efficiency, N_S: # of signal, L : integrated luminosity

J.Yan(KEK) et al. "Measurement of the Higgs boson mass and

 $e^+e^- \rightarrow ZH$ cross section using $Z \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$ at the ILC" (2016) (2016) (2016)

• For BSM search, this study uses hadronic channel $Z \rightarrow qq$ and $E_{cm} = 250 \text{ GeV}$

Hadronic Channel Analysis Cut table [Ecm=250GeV,250fb⁻¹,Left]

Polarization: (e-,e+) = (-0.8,+0.3)											
Process	:	2f_1	2f_h	4f_1	4f_sl	4f_h	11H	BG	qqH	Signal	Signf
Cross Section	:	38176.9	78046.1	5655.8	18398.3	16799.3	109.233	157186	210.184	21.0184	
Generated	:	5.76948e+06	3.17329e+06	3.14632e+06	4.9795e+06	2.74204e+06	280686		568687	39601	
Expected	:	9.54422e+06	1.95115e+07	1.41395e+06	4.59957e+06	4.19983e+06	27308.2	3.92964e+07	52546	5254.6	0.837615
Cut0	:	9.16132e+06	1.94897e+07	1.35278e+06	4.59883e+06	4.19983e+06	27124.7	3.88296e+07	52546	5254.06	0.84254
Cut1	:	1.71542e+06	1.93796e+07	162691	1.64702e+06	4.19268e+06	19411.4	2.71168e+07	47847.5	5248.7	1.00695
Cut2	:	151655	385894	38813	351506	112295	9742.59	1.04991e+06	3541.23	4900.03	4.76305
Cut3	:	858.166	301045	329.353	261376	104008	9056.2	676673	3288.26	4757.17	5.749
Cut4	:	447.409	56407.6	261.745	224864	94406.5	8332.75	384720	3043.3	4522.98	7.22142
Cut5	:	150.217	11283.9	108.044	96769.5	17966.9	2578.67	128857	976.355	3560.58	9.74882
Cut6	:	145.312	5988.7	99.5936	85404.1	15545.7	2516.72	109700	910.916	3439.33	10.1842
Cut7	:	10.7462	5252.55	88.5166	81391.3	15258.4	2381.82	104383	889.332	3305.78	10.0323
Cut8	:	10.6587	5208	85.6002	81088.7	15240.2	2367.81	104001	888.704	3301.29	10.0366
Cut9 	:	6.1032	1360.8	53.2566	41402.1	4634.01	1451.31	48907.6	484.159	2717.91	11.9063

Hadronic Channel Analysis Cut table [Ecm=250GeV,250fb⁻¹,Right]

Polarization: (e-,e+) = (+0.8,-0.3)											
		Keduction Table									
Process	:	2f_1	2f_h	4f_l	4f_sl	4f_h	11H	BG	qqH 	Signal	Signf
 Cross Section	:	34983.6	46214.9	1467.78	2063.18	1568.29	63.9953	86361.8	141.951	14.1951	
Generated	:	5.76948e+06	3.17329e+06	3.14632e+06	4.9795e+06	2.74204e+06	280686		568687	39601	
Expected	:	8.74591e+06	1.15537e+07	366946	515794	392073	15998.8	2.15904e+07	35487.8	3548.78	0.763055
 Cut0	:	8.3892e+06	1.15318e+07	355972	515506	392073	15895.6	2.12004e+07	35487.8	3548.26	0.769916
 Cut1	:	1.47311e+06	1.14602e+07	54961.3	220242	391346	10916.8	1.36107e+07	32298.4	3544.2	0.959414
 Cut2	:	107981	241389	4395.3	52923.6	11049.2	5664.63	423403	2376.08	3303.43	5.04307
 Cut3	:	530.851	185648	34.1624	44254.5	10254.8	5275.35	245998	2209.22	3204.19	6.39037
Cut4	:	255.591	29948.8	26.4309	38270.7	9234.84	4917.57	82654	2047.21	3037.24	10.2538
Cut5	:	78.9459	5488.86	8.79024	22133	2002.74	1484.08	31196.5	657.579	2381.7	12.872
Cut6	:	69.9076	2688.71	7.5148	19426.4	1720.71	1449.48	25362.7	619.917	2305.86	13.7097
Cut7	:	9.38775	2448.04	6.85208	18506.1	1692.47	1376.41	24039.3	607.134	2208.31	13.4757
Cut8	:	7.92505	2423.53	6.67759	18462.6	1690.81	1368.73	23960.2	606.369	2205.93	13.4818
Cut9 	:	4.73756	846.263	5.5476	11387.7	789.307	1065.89	14099.5	424.513	1989.68	15.4832

2016/11/30 @ILD A/S Meeting

bin width:2.0 GeV

Toy Monte Carlo to set upper limit

bkg : only yields are floated

Left

Right

signal: GPET (Gaussian + Exponential) Fit signal & bkg bkg : 5rd order polynomial Fit_signal Pol:-1 Fit_bkg Pol:-1 bin width:1.0 GeV >²⁰⁰ 9 > 3200 # χ^2 /NDF = 0.832533 χ²/NDF = 1.539364 Event / 1:0 100 <u> 2</u>000 No. of events = 2717 No. of events = 49391 Event/ 009⁰⁰ Left 50 400 200 120 130 140 150 160 120 130 140 150 160 100 110 100 110 /NDF = 0.833 Mrecoil [GeV] $\chi^2/\text{NDF} = 1.54$ Mrecoil [GeV] Fit_bkg Pol:1 Fit_signal Pol:1 Event / 1.0 GeV 00 00 >500 9 χ^2 /NDF = 0.496397 χ²/NDF = 0.840825 <u>0,400</u> No. of events = 1989 No. of events = 14523 Event / 1. 200 Right [₩]₩₩₩₩ 50 100 100 110 120 130 140 150 160 100 110 120 130 140 150 160 $\chi^2/\text{NDF} = 0.841^{\text{Mrecoil [GeV]}}$ $\chi^2/\text{NDF} = 0.496^{\text{Mrecoil [GeV]}}$

2016/11/30 @ILD A/S Meeting

signal: GPET (Gaussian + Exponential) Fit signal & bkg bkg : 5rd order polynomial Fit_signal Pol:-1 Fit_bkg Pol:-1 bin width:0.5 GeV Event / 0.5 GeV Event / 0.5 GeV 0 0 0 00 00 χ^2 /NDF = 0.722224 χ²/NDF = 1.219555 No. of events = 2717 No. of events = 49391 Left 200 20 100 110 120 130 140 150 160/NDF = 0.722 Mrecoil [GeV] $\chi^2/NDF = 1.22$ 130 140 150 160 Mrecoil [GeV] Fit_signal Pol:1 Fit_bkg Pol:1 Event / 0.5 GeV 0 0 > ტ250 χ^2 /NDF = 0.286265 χ^2 /NDF = 0.888100 Event / 0.5 0 No. of events = 1989 No. of events = 14523 Right 100 20 50 0 100 110 120 130 140 150 160 110 120 130 140 150 160 100 χ^2 /NDF = 0.286 Mrecoil [GeV] χ^2 /NDF = 0.888 Mrecoil [GeV]

2016/11/30 @ILD A/S Meeting

2016/11/30 @ILD A/S Meeting

Previous study

Akimasa Ishikawa (Tohoku Unv.),

"Search for Invisible Higgs Decays at the ILC" LCWS2014@Belgrade

signal: GPET (Gaussian + Exponential)

Fit signal & bkg

bkg : 3rd order polynomial

2016/11/30 @ILD A/S Meeting

Toy Monte Carlo to set upper limit

2016/11/30 @ILD A/S Meeting

Signal feature [hadronic channel]

The major backgrounds have the final states qqll,qqlv,qqvv.

- **1**. ZZ semileptonic
- 2. WW semileptonic
- 3. $Zv_ev_e, Z \rightarrow qq$
- 4. $W\nu_e\nu_e, W \rightarrow qq$

- **5.** $\nu\nu$ H,H \rightarrow ZZ, Z \rightarrow qq
- 6. qqH, H \rightarrow SM decay

Signal feature [leptonic channel]

Major Backgrounds [leptonic channel]

The major backgrounds have the final states with di-lepton & missing energy.

- 1. ZZ leptonic
- 2. WW leptonic
- 3. single $Z \& v_e v_e, Z \rightarrow ll$
- 4. single W & e ν_e , W \rightarrow e ν_e

5. $\nu\nu$ H,H \rightarrow ZZ,Z \rightarrow *ll*

6. llH, H \rightarrow SM decay

Leptonic Channel Analysis

Missing Mass Plots [Ecm=250 GeV, 250 fb⁻¹]

2016/11/30 @ILD A/S Meeting

Leptonic Channel Analysis

Improvements

modified cut variables and trained MVA again
In the previous MVA, I used SM sample as signal. <- corrected

Significance improved, while efficiency decreased.
Which has higher priority ?

250GeV,250fb ⁻¹	,H→inv(BR=0.1)	significance	efficiency	
μμΗ	Left	4.86 → <mark>5.69</mark>	47.4% → 33.5%	
	Right	6.48 → 7.39	67.9% → 58.9%	
eeH	Left	4.07 → <mark>4.51</mark>	43.9% → 24.9%	
	Right	5.61 → <mark>6.39</mark>	52.7% → 48.2%	