Polarization Measurement from Collision Data

Robert Karl ^{1,2} Jenny List ²

¹Deutsches Elektronen-Synchrotron (DESY)

 2 University of Hamburg

30.11.2016

Determination of the Polarization from Collision Data

- Previous Work:
 - Using the information from W-pair production (Ivan Marchesini)
 - Using the information from single W, γ , Z events (Graham W. Wilson)
- Current Work:
 - Combining all relevant processes, including all uncertainties and their correlations
 - Compensating for a non-perfect helicity reversal
 - Including constraints from the polarimeter measurement

The New Unified Approach

- χ^2 -Method:
 - Combining all suitable processes

$$\chi^2 = \sum_{\rm process} \left(\vec{\sigma}_{\rm data} - \vec{\sigma}_{\rm theory} \right)^T \Xi^{-1} \left(\vec{\sigma}_{\rm data} - \vec{\sigma}_{\rm theory} \right)$$

- $\begin{array}{lll} \bullet & \text{Considering all statistical} & \vec{\sigma} := \begin{pmatrix} \sigma_{-+} & \sigma_{+-} & \sigma_{--} & \sigma_{++} \end{pmatrix}^T \\ \text{and systematical} & & \Xi := \Xi_N + \Xi_B + \Xi_{\varepsilon} + \Xi_{\mathcal{L}}; \end{array}$
- ► Using a full covariance Matrix (Ξ)

$$\left(\Xi_{\varepsilon}\right)_{ij} = \operatorname{corr}\left(\vec{\sigma}_{i}^{\varepsilon}, \ \vec{\sigma}_{j}^{\varepsilon}\right) \frac{\partial \vec{\sigma}_{i}}{\partial \varepsilon_{i}} \frac{\partial \vec{\sigma}_{j}}{\partial \varepsilon_{j}} \Delta \varepsilon_{i} \Delta \varepsilon_{j}$$

Compensation non-perfect helicity reversal: Using 4 independent parameters

Alternative parametrization: Average Polarization and deviation

$$P_{e^{\pm}}^{-} = -|P_{e^{\pm}}| + \frac{1}{2}\delta_{e^{\pm}}$$
$$P_{e^{\pm}}^{+} = |P_{e^{\pm}}| + \frac{1}{2}\delta_{e^{\pm}}$$

Robert Karl | Polarimetry | 30.11.2016 | 3/8

Currently implemented processes:

Process	Channel
single W^\pm	$e u l u$, $e u q \overline{q}$
WW	$q \overline{q} q \overline{q}, q \overline{q} l u, l u l u$
ZZ	$q \overline{q} q \overline{q}, \ q \overline{q} ll, \ llll$
ZZWWMix	$q \overline{q} q \overline{q}$, $l u l u$
Ζ	$q \overline{q}$, $l l$

Statistical precision H-20:

[%]	500	350	250	500	250
$P_{e^{-}}^{-}$	0.2	0.3	0.1	0.08	0.09
$P_{e^-}^+$	0.05	0.06	0.03	0.02	0.02
$P_{e^+}^-$	0.1	0.1	0.06	0.04	0.04
$P_{e^+}^+$	0.2	0.3	0.1	0.08	0.08

- Consider best case using σ_{tot} :
 - Assumption of a perfect 4π detector
 - No background
 - No systematic uncertainties

Comparison to previous analyses:

- Both previous anlyses
 - Using fiducial cuts
 - Statistical uncertainties only
- Single boson: L = 2ab⁻¹
 No background estimation

\boldsymbol{P}_{e^-}	: 0.085%	δ_{e^-} :	0.12%
P_{e^+}	: 0.22%	δ_{e^+} :	0.32%

W-pairs (angular fit): L = 500fb⁻¹
 Full background estimation

 $P_{e^-}: 0.08\% \qquad P_{e^+}: 0.34\%$

Systematic Uncertainties and their Correlations

Systematic quantit	related to:	
Integrated luminosity	\mathcal{L}	accelerator
Selection efficiency	ε	detector
	P	

Background estimate B theory

Remark:

A non-perfect helicity reversal has close to no influence on the precision due to compensation of the unified approach

Uncertainties influenced by

- Detector calibration and alignment
- Machine performance
- $\blacktriangleright~B$ assumed constant and small
- $\Rightarrow \Delta \mathcal{L}$, $\Delta \varepsilon$ are time dependent

Correlations:

- Data sets taken concurrently
- Generate correlations
- ⇒ Lead to cancellation of systematic uncertainties

⇒ Fast helicity reversal

- Fast switch between σ_{±±} measurements e.g. train-by-train
- ⇒ Faster than changes in calibrations, alignments, etc.

Testing for a Non-Perfect Helicity Reversal

Variation in the absolute polarization

- Toy Measurement for 5 different polarization discrepancies for both beams
- ▶ Nominal initial polarizations: $|P_{e^-}| = 80\%$, $|P_{e^+}| = 30\%$
- Statistical uncertainties only

• χ^2 -Fit:

- Correct determination of the 4 polarization values
- No noticeable changes in the uncertainties

⇒ Non-Perfect Helicity Reversal:

- ⇒ No noticeable impact on polarization precision using total cross sections
- ⇒ In addition: consider polarimeter information

Simplified approach: (as a first step)

- Neglect spin transport
- Using $\Delta P/P = 0.25\%$:
- Gaussian distribution
 - ▶ Mean: $|P_{e^-}| = 80\%, |P_{e^+}| = 30\%$
 - Width: ΔP

[%]	500	350	250	500	250
Without Constraint					
$P_{e^-}^-$	0.2	0.3	0.1	0.08	0.09
With Constraint					
$P_{e^{-}}^{-}$	0.1	0.1	0.1	0.07	0.07

Implementation:

$$\chi^2 + = \sum_{P} \left[\frac{\left(P_{e^{\pm}}^{\pm} - \mathcal{P}_{e^{\pm}}^{\pm} \right)^2}{\Delta \mathcal{P}^2} \right]$$

- *P*[±]_{e[±]}: 4 fitted parameters
 P[±]_{e[±]}: Polarimeter measurement
- ΔP : Polarimeter uncertainty

Conclusion

New unified approach combing all suitable cross sections and the polarimeter measurement

- \Rightarrow Statistical precision of a permille-level is achievable
- \Rightarrow Impact of time-dependent systematic uncertainties can be reduced due to a fast helicity reversal
- \Rightarrow Non-perfect helicity reversal has no impact on the statistical precision

Outlook

Considering systematic quantities for each process

- $\rightarrow\,$ Determination of the selection efficiency ε and background estimation B
- $\rightarrow\,$ Determination of the systematic uncertainties: $\Delta B,\,\Delta\varepsilon,\,\Delta\mathcal{L}$
- $\rightarrow~$ Determination of realistic correlation factors
- Implementing differential cross sections within the χ^2 -method
 - ightarrow Using the angular information of a process to further improve the precision
 - \rightarrow Consider a well separation from possible BSM effects

Backup Slides

Polarization at a e^-e^+ Collider

- Helicity is the projection of the spin vector on the direction of motion
- In case of massless particles, helicity is equal to chirality
- $\blacktriangleright \text{ If } E_{\text{kin}} \gg E_0 \quad \longrightarrow \quad m_e \approx 0$

▶ For a bunch of particles the polarization is defined as:

$$P := \frac{N_R - N_L}{N_R + N_L}$$

Improvement by Constraints from Polarimeter Measurement

Concept

Example Processes:

s-channel spin-1 particle:

 $\sigma_{\rm LL} = \sigma_{\rm RR} = 0$

- \blacktriangleright Calculation of the P from polarized σ measurement of well known SM-process
 - $\rightarrow~$ Using the information of their chiral structure
- Requirement to consider a process:
 - Theoretical very well known
 - $\rightarrow~$ Reduction of theoretical uncertainties
 - High absolute cross section (high rate)
 - \rightarrow Minimizing the statistical error
 - Large left-right-asymmetry
 - $\rightarrow~$ Minimizing the influence of systematic uncertainties
 - Well separable from possible BSM-effects
- ► Feature of the ILC: Using 4 different polarization configuration (→ signs of the polarizations)
- \Rightarrow Task: Providing the absolute scale calibration

Robert Karl | Polarimetry | 30.11.2016 | 14/8

Special Case: The Modified Blondel Scheme (MBS)

- Constraints for the Modified Blondel Scheme:
 - Process must fulfill: $\sigma_{LL} \equiv \sigma_{RR} \equiv 0$
 - Perfect helicity reversal: $+|P| \leftrightarrow -|P| \Rightarrow |P| \equiv \text{const.}$
- Unique solution:
 - 4 possible cross section measurements: $\sigma_{-+}, \sigma_{+-}, \sigma_{--}, \sigma_{++}$

Maximal 4 unknown guantities:

$$\sigma_{\mathrm{LR}},\ \sigma_{\mathrm{RL}},\ |P_{e^-}|\,,\ |P_{e^+}|$$

▶ Solve for $|P_{e^{\mp}}|$:

$$\sigma_{\pm\pm} = \frac{\left(1\pm \left|P_{e^{-}}\right|\right)}{2} \frac{\left(1\mp \left|P_{e^{+}}\right|\right)}{2} \cdot \sigma_{RL} + \frac{\left(1\mp \left|P_{e^{-}}\right|\right)}{2} \frac{\left(1\pm \left|P_{e^{+}}\right|\right)}{2} \cdot \sigma_{LR}$$

Modified Blondel-Scheme:

$$|P_{e^{\mp}}| = \sqrt{\frac{(\sigma_{-+} + \sigma_{+-} - \sigma_{--} - \sigma_{++}) \left(\pm \sigma_{-+} \mp \sigma_{+-} + \sigma_{--} - \sigma_{++}\right)}{(\sigma_{-+} + \sigma_{+-} + \sigma_{--} + \sigma_{++}) \left(\pm \sigma_{-+} \mp \sigma_{+-} - \sigma_{--} + \sigma_{++}\right)}}$$

Uncertainties are calculated via analytic error propagation

The Unified Approach: χ^2 -Method

- Desire for a more general approach:
 - Consider any process with a polarization dependence + using several processes at once
 - Compensate non-perfect helicity reversal: $+ |P^R| \leftrightarrow |P^L|$
- Consider a χ^2 -Method: Using all 4 chiral cross sections

$$\chi^{2} = \sum_{\rm process} \left\{ \sum_{\pm \pm} \left[\frac{\left(\sigma^{\rm data} - \sigma^{\rm theory} \right)^{2}}{\Delta \sigma^{2}} \right] \right\}$$

Compensate non-perfect helicity reversal: 4 free parameters

Error determination via toy experiments

Polarized Cross Section

Theoretical polarized cross section:

$$\begin{split} \sigma\left(P_{e^-},P_{e^+}\right) &= \frac{\left(1-P_{e^-}\right)}{2}\frac{\left(1-P_{e^+}\right)}{2} \cdot \sigma_{\mathsf{LL}} + \frac{\left(1+P_{e^-}\right)}{2}\frac{\left(1+P_{e^+}\right)}{2} \cdot \sigma_{\mathsf{RR}} \\ &+ \frac{\left(1-P_{e^-}\right)}{2}\frac{\left(1+P_{e^+}\right)}{2} \cdot \sigma_{\mathsf{LR}} + \frac{\left(1+P_{e^-}\right)}{2}\frac{\left(1-P_{e^+}\right)}{2} \cdot \sigma_{\mathsf{RL}} \end{split}$$

Measured polarized cross section:

$$\sigma\left(P_{e^{-}}, P_{e^{+}}\right) = \frac{N}{\varepsilon \cdot \mathcal{L}} = \frac{D - \langle B \rangle}{\varepsilon \cdot \mathcal{L}};$$

Statistic quantity:selected data D, number of events NSystematic quantity:background B, selection efficiency ε ,
integrated luminosity \mathcal{L}

Cross section of the 4 polarization configurations

$$\begin{split} \sigma_{--} &:= \sigma \left(-|P_{e^-}|, -|P_{e^+}| \right) & \sigma_{++} &:= \sigma \left(+|P_{e^-}|, +|P_{e^+}| \right) \\ \sigma_{-+} &:= \sigma \left(-|P_{e^-}|, +|P_{e^+}| \right) & \sigma_{+-} &:= \sigma \left(+|P_{e^-}|, -|P_{e^+}| \right) \end{split}$$

Previous Single W^{\pm} , Z, γ Study: Leading Diagrams

Comparison to the Previous W-Pair Study

Study by Ivan Marchesini:

- Using $e^-e^+ \rightarrow W^+W^- \rightarrow q \bar{q} l \nu$
- Statistical uncertainties only
- Consider equal absolute polarizations (MBS)
- Including full background study

Adjustment of the current study:

- \blacktriangleright Limited to $e^- e^+ \rightarrow \, W^+ \, W^- \rightarrow q \bar{q} l \nu$
- Forced equal absolute polarizations $(|P^L| \equiv |P^R|)$
- Including same background estimation and selection efficiency

Comparison:

 $\Rightarrow \chi^2\text{-method}$ yields better precision under same conditions than the MBS

Comparison to Previous Single W^{\pm} , γ , Z Study

Study by Graham W. Wilson

Using 4 Processes simultaneously:

 $\begin{array}{ll} e^- e^+ \rightarrow \nu \bar{\nu} \gamma; & e^- e^+ \rightarrow \nu \bar{\nu} Z \\ e^- e^+ \rightarrow e^+ \nu W^- \rightarrow e^+ \nu \mu^- \bar{\nu} \\ e^- e^+ \rightarrow e^- \bar{\nu} W^+ \rightarrow e^- \bar{\nu} \mu^+ \nu \end{array}$

- ► Consider equal absolute polarizations 2 Parameters: P_{e^-}, P_{e^+}
- Consider deviations: 4 Parameters

$$\begin{split} P^L_{e^\pm} &= -\left|P_{e^\pm}\right| + \frac{1}{2}\delta_\pm \\ P^R_{e^\pm} &= \quad \left|P_{e^\pm}\right| + \frac{1}{2}\delta_\pm \end{split}$$

Comparison to Current analysis

Differences:

parameters		$\Delta P/P, \ \mathcal{L} = 2ab^{-1}$		
#	P	Previous	Current	
2	P_{e^-}	0.07%	0.051%	
	\boldsymbol{P}_{e^+}	0.22%	0.21%	
4	$P_{e^{-}}$	0.085%	0.088%	
	δ_{e^-}	0.12%	0.19%	
	$\boldsymbol{P_{e^+}}$	0.22%	0.23%	
	δ_{e^+}	0.32%	0.56%	

 \mathcal{L} equally distributed between $\sigma_{\pm\pm}$ Statistical precision only

 \blacktriangleright Very similar precision even without additional constraint on δ

Combining W-Pair + Single W, Z, γ

Combined vs. W-Pairs alone

- ► W-Pair yields only enough information for 2 parameter fit P_e-, P_e+
- ► Large improvement → due to additional processes
- ► Combined: fit of 4 parameters is possible P^L_e, P^R_e, P^L_e, P^R_e
- ⇒ Compensation for a non-perfect helicity reversal

Combined vs. Single Boson

- The 4 processes Single W[±], Single Z, Single γ yields a large analysis power
- Combined precision dominated by single boson processes

$$\Delta P/P, \mathcal{L} = 2\mathsf{a}\mathsf{b}^{-1}$$

single	W,Z,γ	Combined
P_{e^-}	0.088%	0.079%
δ_{e^-}	0.19%	0.18%
$\boldsymbol{P_{e^+}}$	0.23%	0.16%
δ_{e^+}	0.56%	0.51%

Consider Correlated Uncertainty

Implementing correlated uncertainty:

$$\chi^{2} = \sum_{\text{process}} \sum_{i \in \pm \pm} \frac{\left(\sigma_{i}^{\text{data}} - \sigma_{i}^{\text{theory}}\right)^{2}}{\Delta \sigma_{i}^{2}} \longrightarrow \sum_{\text{process}} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}}\right)^{T} \Xi^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}}\right)$$
$$\vec{\sigma} := \left(\sigma_{-+} \quad \sigma_{+-} \quad \sigma_{--} \quad \sigma_{++}\right)^{T}$$
$$\Xi := \Xi_{N} + \Xi_{B} + \Xi_{\varepsilon} + \Xi_{\mathcal{L}}; \qquad \text{e.g.} \quad \left(\Xi_{\varepsilon}\right)_{ij} = \operatorname{corr} \left(\vec{\sigma}_{i}^{\varepsilon}, \ \vec{\sigma}_{j}^{\varepsilon}\right) \frac{\partial \vec{\sigma}_{i}}{\partial \varepsilon_{i}} \frac{\partial \vec{\sigma}_{j}}{\partial \varepsilon_{j}} \Delta \varepsilon_{i} \Delta \varepsilon_{j}$$

Occurrence of correlated uncertainties:

- ▶ Fast switch between $\sigma_{\pm\pm}$
- \blacktriangleright Faster than change in e.g $\delta \mathcal{L}$
- $\rightarrow \Delta \sigma_{\pm\pm} (\Delta \mathcal{L})$ becomes correlated
- $\Rightarrow \ \mathrm{corr} \left(\vec{\sigma}_i^{\mathcal{L}}, \ \vec{\sigma}_j^{\mathcal{L}} \right) \neq 0 \quad \forall i \neq j$

Consider disadvantageous situation:

- ► ε = 0.6
- $\blacktriangleright \ \Delta \varepsilon / \varepsilon = 0.01$
- $\blacktriangleright \Delta \mathcal{L}/\mathcal{L} = 0.001$
- \rightarrow Studying the impact of correlations

Open issues

- Implementing fiducial cuts for all processes \rightarrow correct description of all systematics
- Including a complete background analyses

Further Improvement

- Consider also differential cross sections
- Study the possibility to use fiducial and differential cross sections simultaneously

Improvement by Constraints from Polarimeter Measurement

Consider Polarimeter Information

Simplified approach: (as a first step)

- Assume polarimeter measure directly at IP (neglect spin transport)
- Use nominal polarimeter uncertainty $\Delta P/P = 0.25\%$:
- Toy polarimeter measurement:

Gaus-smeared

- Mean: $P_{e^-} = 80\%, \ P_{e^+} = 30\%$
- Width: ΔP

Implementation

$$\chi^2 \! + \! = \sum_{P} \left[\frac{\left(P_{e^{\pm}}^{L,R} - \mathcal{P}_{e^{\pm}}^{L,R} \right)^2}{\Delta \mathcal{P}^2} \right]$$

▶
$$P_{e^{\pm}}^{L,R}$$
: 4 fitted Parameter

• $\mathcal{P}_{e^{\pm}}^{L,R}$: Polarimeter measurement

• $\Delta \mathcal{P}$: Polarimeter uncertainty

Impact of the Polarimeter Constraint

For idealized situation:

- Better polarization precision, especially for lower integrated luminosities
- More robust against large Poisson fluctuations in the cross section measurement

Next step: add more realism

- Spin tracking including misalignments in the BDS
- Include impact of collision effect
- Use upstream and downstream polarimeter separately

