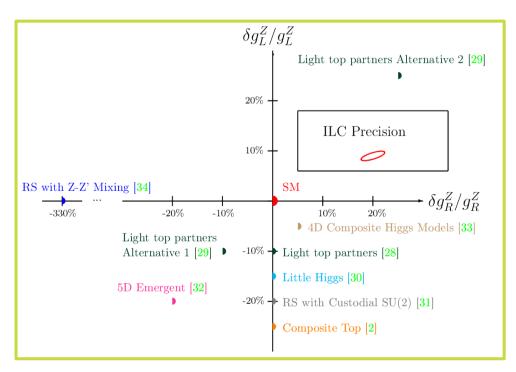
Top electroweak coupling study using di-muonic state at $\sqrt{s} = 500$ GeV, ILC

ILD Analysis/Software Meeting


<u>Yo Sato^A, Francois Le Diberder^B, Emi Kou^B, Hitoshi Yamamoto^A</u>

Tohoku University^A, LAL^B

ILD Analysis/Software Meeting

Top electroweak coupling

The top quark mass is comparable with the electroweak symmetry breaking scale. One can speculate that top quark plays a special role for the EWSB, in such composite models. Therefore top quark electroweak coupling is a good probe of new physics.

Plots show the predicted deviations from the Standard model of Z^0 couplings to t_L and t_R in composite models **Precision expected at the ILC will allow to distinguish between models.** arXiv:1505.06020 [hep-ph]

Matrix element method

The most efficient method when all the kinematics can be reconstructed.

- Result of previous study shows that the 10 form factors can be fitted simultaneously at less than a percent precision.

Statis	stical u	ncertai	inties a	nd cori	relatior	n with t	he SM	LO as	normal	ization	
	Kheim, E.K. Kurihara, Le Diberder: arXiv:1503:04247										7
F.	$ \frac{\tilde{\mathcal{R}}e \ \delta \tilde{F}_{1V}^{\gamma}}{0.0037} $	$\begin{array}{c} {\cal R}{\rm e} \; \delta {\tilde F}^Z_{1V} \\ -0.18 \\ 0.0063 \end{array}$	$\begin{array}{c} {\cal R}{\rm e}\;\delta {\tilde F}_{1A}^{\gamma}\\ -0.09\\ +.14\\ 0.0053 \end{array}$	$\begin{array}{c} {\cal R}{\rm e}\;\delta {\tilde F}^Z_{1A}\\ +0.14\\ -0.06\\ -0.15\\ 0.0083 \end{array}$	$\begin{array}{c} {\mathcal R}{\rm e}\;\delta {\tilde F}_{2V}^{\gamma}\\ +0.62\\ -0.13\\ -0.05\\ +0.06\\ 0.0105 \end{array}$	$\begin{array}{c} {\mathcal R}\mathrm{e}\;\delta \tilde{F}^Z_{2V}\\ -0.15\\ +0.61\\ +0.09\\ -0.04\\ -0.19\\ 0.0169 \end{array}$	0	${\mathcal R}{ m e}\;\delta ilde{F}^Z_{2A} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ -0.15 \ 0.0118$	$\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} \mathcal{I} \mathrm{m} \delta \tilde{F}^{Z}_{2A} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	Emi Kou (LAL-Orsay)
			5	500 GeV	<mark>&500</mark> fb⁻	¹ Polariz	ation 50		0.0069	-0.17 0.0100 0% and ±30%	LFC 15, Trento, 7-11 Sep. 2015

This result is at parton level ignoring the detector effect, ISR and so on.

→More realistic study is required !

Setting of this study

Sample

The top pair production di-muonic state; $t\bar{t} \rightarrow b\bar{b}\mu^+\mu^-\nu\bar{\nu}$ at $\sqrt{s} = 500 \text{ GeV}$

Situation

- ✓ The hadronization of *b* and \overline{b} quark
- \checkmark The detector effect (the ILD full simulation)
- × ISR and beamsstrahlung
- × gluon emission from top quark
- × $\gamma\gamma \rightarrow$ hadrons background

Topics

b-jet reconstruction

- Thrust axis method
- Deviation of energy of b-jet

Kinematical reconstruction of top quark

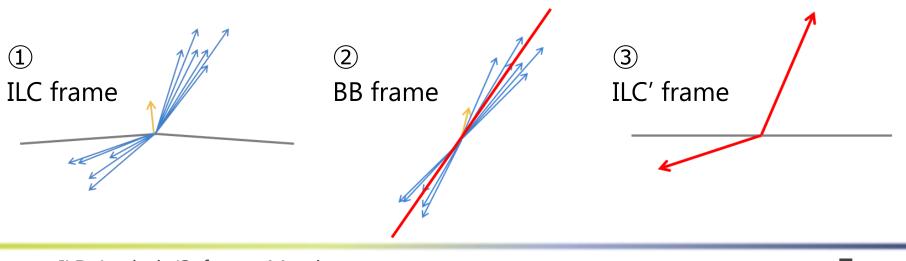
- Strategy
- χ^2 algorithm

Fit of the form factor with matrix element method

• Status report

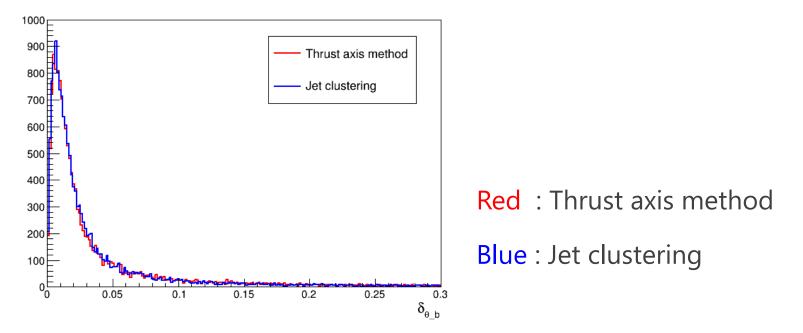
1. b-jet reconstruction

Kinematics of b-jets :


- > Direction is used for kinematical reconstruction of top quark
- Energy is just used to select optimal solution
 (The detail will be described in a later slide.)

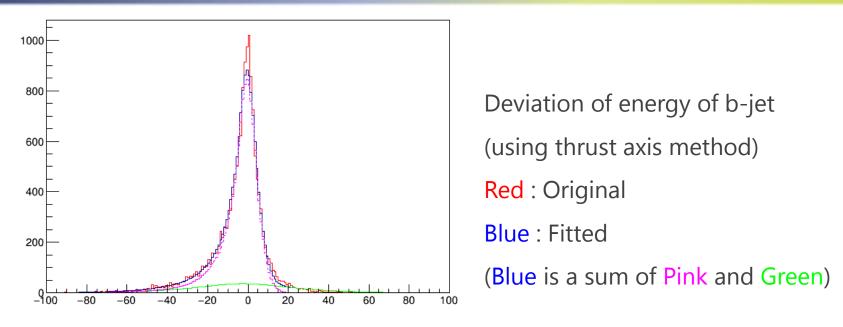
Sub-topics

- Thrust axis method for reconstruction of direction of b-jets
- Deviation of energy of b-jets


Thrust axis method

- ① Collect all hadronized particles from b and \overline{b} quark and photons from isolated leptons in the ILC frame
- ② Boost them to their rest frame and calculate thrust axis in this frame (defined as the BB frame in this slide)
- ③ Boost the vectors along thrust axis to the ILC' frame (ILC' frame : the frame in which head-on-collision occurs)

Comparison two method


The figure shows the δ_{θ_b} , the angle between truth direction of b-quark and reconstructed direction.

Two methods produce almost same precision for direction of b-quark.

 \rightarrow We select the thrust axis method so far.

Deviation of energy of b-jet

To estimate the b-jet energy resolution we use multiple Crystal Ball functions for fitting.

$$CB(x|\alpha, n, \mu, \sigma) = \begin{cases} N \exp\left(-\frac{x^2 - \mu}{2\sigma^2}\right), & \frac{x - \mu}{\sigma} > -\alpha\\ N \cdot A \cdot \left(B - \frac{x - \mu}{\sigma}\right), & \frac{x - \mu}{\sigma} < -\alpha \end{cases}$$

We use $\sigma_{jet} E_b^X$ with two parameters σ_{jet} and X instead of σ

Kinematical reconstruction

Strategy of the kinematical reconstruction

There are 8 unknown kinematics in this state

(= the momenta of two neutrinos and energy of b-jets)

The precision of energy of b-jets is not enough for kinematical reconstruction

• Impose 8 constraints (= initial state constraints and $m_t, m_{\bar{t}}, m_{W^+}, m_{W^-}$)

→ Solutions are obtained in terms of (θ_t, ϕ_t) (→ $(\theta_t, \phi_t, m_t, m_{\bar{t}}, m_{W^+}, m_{W^-})$)

It is not unique solution since the equation is nonlinear. Furthermore an ambiguity of b-charge remains. \rightarrow **Typically 4 solutions per event.**

Select optimal solution

Compare energy of b-quarks between reconstructed and measured.

χ^2 algorithm #1

1. Define the χ^2_{μ} ;

$$\chi_{\mu}^{2} = \chi_{\mu^{+}}^{2} + \chi_{\mu^{-}}^{2}, \quad \chi_{\mu^{\pm}}^{2} = \left(\frac{E_{\mu^{\pm}}^{**}(\theta_{t},\phi_{t},m_{t},m_{\bar{t}},m_{W^{+}},m_{W^{-}}) - m_{W^{\pm}}/2}{\sigma[E_{\mu^{\pm}}^{**}]}\right)^{2}$$

The energy of μ^{\pm} in the W^{\pm} rest frame, $E_{\mu^{\pm}}^{**}$, must be equal to $m_{W^{\pm}}/2$ and it can be written by six parameters (θ_t , ϕ_t , m_t , $m_{\bar{t}}$, m_{W^+} , m_{W^-}).

2. Define the δ_b^2 ;

$$\delta_b^2 = -2\log L_b - 2\log L_{\overline{b}}, \ L_b = \operatorname{CB}\left(E_b^{\operatorname{meas.}} - E_b^{\operatorname{rec.}}(\theta_t, \phi_t, m_t, m_{\overline{t}}, m_{W^+}, m_{W^-})\right)$$

Although the energy of b quarks can be only poorly measured, we can eliminate bcharge ambiguity by comparing the measured energy to the reconstructed energy.

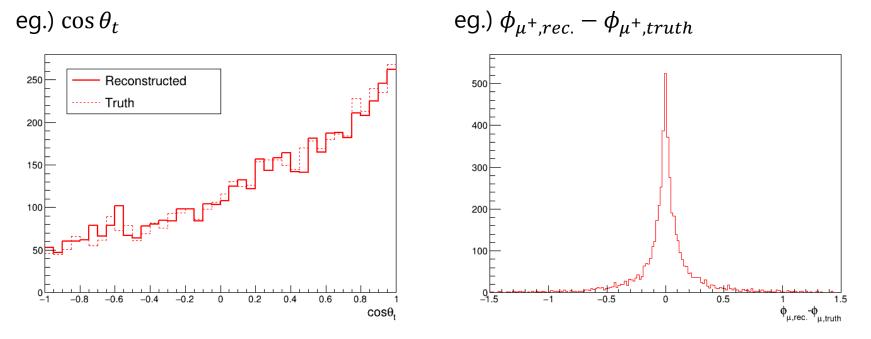
3. Compound $\chi^2_{\text{tot.}}$; $\chi^2_{\text{tot.}} = \chi^2_{\mu} + \delta^2_b$

One minimizes the $\chi^2_{tot.}$ to obtain optimal solution in terms of $(\theta_t, \phi_t, m_t, m_{\bar{t}}, m_{W^+}, m_{W^-})$.

χ^2 algorithm #2

We used the reconstructed direction of b-jets as constant.

- → Add 4 angles $(\theta_b, \phi_b, \theta_{\bar{b}}, \phi_{\bar{b}})$ for the fitting parameters
- → Add constraints of 4 angles $(\theta_b, \phi_b, \theta_{\bar{b}}, \phi_{\bar{b}})$ to $\chi^2_{tot.}$ as below;


$$\chi^{2}_{\text{direction}} = \chi^{2}_{\theta_{b}} + \chi^{2}_{\phi_{b}} + \chi^{2}_{\theta_{\overline{b}}} + \chi^{2}_{\phi_{\overline{b}}}, \qquad \chi^{2}_{\theta_{b}} = \left(\frac{\theta^{\text{meas.}}_{b} - \theta_{b}}{\sigma[\theta^{\text{meas.}}_{b}]}\right)^{2}$$

 $(\chi^2_{\phi_b}, \chi^2_{\theta_{\overline{b}}}, \chi^2_{\phi_{\overline{b}}})$ are same as $\chi^2_{\theta_b}$) $(\chi^2_{\text{tot.}})' = \chi^2_{\text{tot.}} + \chi^2_{\text{direction}}$ Then we can use $(\chi^2_{\text{tot.}})'$ instead of $\chi^2_{\text{tot.}}$.

Kinematical reconstruction : Results

Reconstructed particles are used in terms of helicity angles for fit form factors:

$$\cos heta_t$$
 , $\cos heta_{W^+}$, ϕ_{W^+} , $\cos heta_{\mu^+}$, ϕ_{μ^+} , $\cos heta_{W^-}$, ϕ_{W^-} , $\cos heta_{\mu^-}$, ϕ_{μ^-}

The ratio of wrong assignment of b-quark is only 2.1 % !

BUT we use truth values as seeds for minimization for now.

Status of the 10 form factors fit

Δ_{F1}	-0.0067 ± 0.0082
Δ_{F2}	0.035 ± 0.017
Δ_{F3}	-0.056 ± 0.012
Δ_{F4}	0.035 ± 0.018
Δ_{F5}	-0.022 ± 0.026
Δ_{F6}	0.042 ± 0.045
Δ_{F7}	-0.0081 ± 0.015
Δ_{F8}	0.010 ± 0.032
Δ_{F9}	0.013 ± 0.024
Δ_{F10}	-0.010 ± 0.022

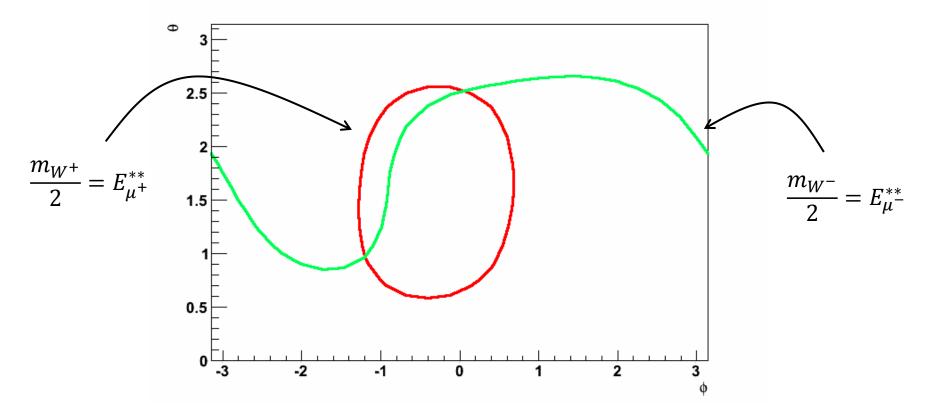
(Preliminary)

5000 events, after cut on the $\chi^2_{tot.}$ to keep ~83% of the events.

Some small biases are observed (eg. Δ_{F3}) at few percent level

\rightarrow No show stopper yet !!!

→ Should be corrected by accounting for detector effects in $|M|^2$

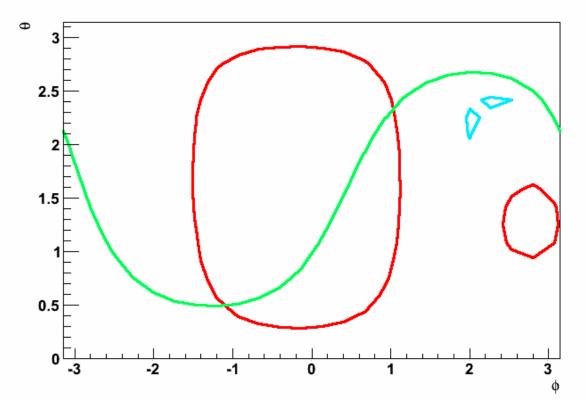

Summary and Plan for LCWS

- Matrix element method is the most efficient method when all the kinematics can be reconstructed.
- Thrust axis method produced almost the same precision for direction of b-jets as jet clustering.
- All kinematics of this state are obtained with a good accuracy from kinematical reconstruction.
- Although there are small biases, the hadronization and detector effect don't affect for fit of form factors too match.
- Plan to fit 1 form factor instead of 10 and assess it using forward backward asymmetry of top quark.

Back up

Kinematical constraints

In the W rest frame, the energy of isolated lepton is equal to $m_W/2$ (with ignoring ISR and bremsstrahlung)


Measurements of b-quark energies

To select a right solution, we can use the measurement of b-jets energy. (Because this figure is at parton level, the χ_b^2 doesn't make sense.)

Miss combination of b-quarks

When we use the anti-b direction for the top reconstruction, the measurements of energy of b-jets excludes this combination.

Flow of analysis

Reconstruction of two muons

Reconstruction of two b-jets

- Thrust axis method
- Jet clustering (LCFIPlus)
- Kinematical reconstruction of top quark

Fit of the form factors with matrix element method