Updates on $h \to \mu^+ \mu^- @ 500 \text{ GeV}$

Quick Introduction

• $h \to \mu^+ \mu^-$ @ 500 GeV is selected as the one of the physics benchmark process of ILD optimization.

			tector models will be ased on physics perfo	rmance
	process	physics	detector performance	Ecm
	H—>cc	BR	c-tag, JER	any
	Η—>μμ	BR	high P tracking	500 GeV
	Η—>ττ	BR, CP	τ recon., PID, track separation	250 GeV
	H—>bb	M _H , BR	JES, JER, b-tag	500 GeV
	H—>invisible Z—>qq	Higgs Portal	JER	250 GeV
	evW—>evqq	M _w , TGC	JES, JER	500 GeV
	tt-bar—>6-jet	top coupling, A _{FB}	b-tag, jet charge	500 GeV
n	$\chi_1^+\chi_1^-, \chi_2^0\chi_1^0$ near degenerated	natural SUSY	low P tracking, PID	500 GeV
	γXX	WIMPs	Photon ER & ES, Hermiticity	500 GeV

Signal

signal:
$$e^+e^- \rightarrow \nu\bar{\nu}h, h \rightarrow \mu^+\mu^-$$

WW-fusion (WWF)

BR($h \to \mu^+ \mu^-$) ~ **2.2*10⁻⁴** expected # events: ~**60** with 1600 fb⁻¹, $P(e^-, e^+) = (-0.8, +0.3)$ ("H20" scenario)

Reminder

- Last talk in ILD @ Higgs/EW Meeting (Aug./31)
 - Fully-simulated samples with DBD configuration (some of them are SGV)
 - Cut-based analysis
 - Precision $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$ ~60%
 - Relatively 50% worse than extrapolation

Progress

- IsolatedLeptonTagger
- More efficient cuts
- Separation between Zh and WWF
- Some try & error with TMVA(BDTG)

IsolatedLeptonTagger

- Originally developed under Higgs self-coupling study
- Use these values to tag leptons
 - E_{ECAL}/(E_{ECAL}+E_{HCAL}) (only for electrons)
 - $(E_{ECAL} + E_{HCAL})/|p|$
 - |p|
 - E_{yoke}
 - $|d_0/\sigma(d_0)|, |z_0/\sigma(z_0)|$
 - MVA cut for isolation
- Currently I did not include SGV samples due to E_{yoke}

Reconstruction Flow

isolated electrons are included in "other particles"

```
Reconstruction efficiency in signal
= \frac{\text{# events correctly reconstruct } 1\mu^{+}1\mu^{-}}{\text{# events}}
= 94.9\%
Purity in signal = 100%
```

Cuts

Exactly one μ^+ and one μ^-

- (1) Select well-measured muon/muon pair
- $\chi^2/Ndf < 1.5$
- Radius of innermost hit
 < 20 mm
- $\sigma(M_{\mu\mu}) < 1 \text{ GeV}$

(2) Select signal-like events

- $N_{P_t > 5 \text{ GeV}} \le 1$
- $125 < E_{vis} < 400 \text{ GeV}$
- $100 < M_{\mu\mu} < 130 \text{ GeV}$
 - (3) Reject some backgrounds
- $\cos \theta_{\mu\mu} < 0.55$
- $|\cos \theta_{\rm miss}| < 0.999$
- $P_t > 5 \text{ GeV}$

Select Well-measured Muons

 χ^2 /Ndf (track fitting parameter)

Radius of innermost hit (first hit of track in detector)

flight forward region sacrifice ~10% signal

Select Well-measured Muons

 $\sigma(M_{\mu\mu})$ (measured error of muon pair mass)

requiring small innermost hit reduces the mass error

cf. no requirements in innermost hit

Select Signal-like Events

 $N_{P_t > 5 \text{ GeV}}$ (# charged particles with $P_t > 5 \text{ GeV}$ in "other particles")

Reject Some Backgrounds

mostly for rejecting 2f processes which is reducible

Cut Table at Precuts

	$\nu \nu h$	$qqh{+}\ell\ell h$	ffh				
	$h o \mu \mu$	$h o \mu \mu$	$h \to \text{other}$	2f	4f	$\gamma\gamma \to 4\mathrm{f}$	5f
No cut	57.53	31.13	4.116×10^{5}	4.224×10^{7}	4.592×10^{7}	3.356×10^{5}	2.209×10^{5}
$\#~\mu^\pm$	54.82	27.72	6553.83	1.314×10^{6}	1.262×10^{6}	2.216×10^4	7206.44
$\chi^2/{ m Ndf}$	54.51	27.59	6525.51	1.261×10^{6}	1.208×10^{6}	2.107×10^4	6978.30
Innermost	50.26	26.18	6194.38	8.042×10^{5}	8.045×10^{5}	1.393×10^{4}	5185.97
$\sigma(M_{\mu\mu})$	50.25	26.18	6192.51	7.287×10^{5}	8.022×10^{5}	1.393×10^{4}	5185.97
$N_{P_t>5{ m GeV}}$	50.22	4.64	1208.32	7.262×10^{5}	7.432×10^{5}	1.354×10^{4}	4567.99
$E_{ m vis}$	50.16	0.72	551.95	2.549×10^{5}	4.244×10^{5}	5379.29	3343.95
$M_{\mu\mu}$	48.65	0.72	8.06	2.076×10^4	1.361×10^{4}	217.37	304.69
$\cos heta_{\mu\mu}$	48.64	0.72	5.40	1.198×10^{4}	1.325×10^{4}	217.37	304.69
$\cos heta_{ m miss}$	48.55	0.42	5.35	1418.20	1.167×10^{4}	198.64	295.95
P_t	48.45	0.39	5.35	1010.82	1.149×10^4	183.07	295.95
# MC	14491	1187	8	7 9	4910	5 9	93

signal efficiency = 84.2% backgrounds suppressed ~3 order of magnitude

Remained Backgrounds

2 f		
μμ	875.21	86.6%
ττ	135.61	13.4%

$\gamma\gamma o 4 f$		
4μ	3.17	1.7%
$2\nu 2\mu$	173.60	94.8%
$2\nu 1\mu 1\tau$	6.30	3.4%

4f		
$2q2\mu$	41.45	0.36%
$2e2\mu$	1553.93	13.5%
$2\mu 2\tau$	40.13	0.35%
$2q1v1\mu$	40.25	0.35%
$2q1v1\tau$	20.13	0.18%
$2\nu 2\mu$	8235.94	71.7%
$2\nu 2\tau$	44.16	0.38%
$2\nu 1\mu 1\tau$	1510.71	13.2%

Separation of Zh and WWF

I used recoil mass (corresponds to Z mass) peak around Z mass shifted higher due to FSR

I defined cut at 120 GeV Zh: < 120 GeV (2.65) WWF: > 120 GeV (45.80)

Try & Error with TMVA(BDTG)

- Usually gives better results than cut-based
 - Half of MC are used for training and other for testing
 - Low MC stat...
- Mostly determined only by $M_{\mu\mu}$, I tried without and with $M_{\mu\mu}$
- Zh and WWF separately

Zh without $M_{\mu\mu}$

5 Inputs: E_{vis} , thrust, $\cos \theta_{thrust}$, charge * $\cos \theta_{u^{\pm}}$

$$\begin{aligned} N_{\text{sig}} &= 0.20 \\ N_{\text{bkg}} &= 0 \\ \frac{S}{\sqrt{S+B}} &= 0.4 \\ \text{precision} &> 200\% \end{aligned}$$

Zh with $M_{\mu\mu}$

5 Inputs:

 $P_{\rm t},\cos heta_{
m thrust},\ M_{\mu\mu},{
m charge *}\cos heta_{\mu^\pm}$

$$N_{sig} = 2.19$$

$$N_{bkg} = 0.07$$

$$\frac{S}{\sqrt{S+B}} = 1.5$$
precision = 69%

WWF without $M_{\mu\mu}$

5 Inputs: E_{vis} , P_{t} , thrust, charge * $\cos \theta_{\mu^{\pm}}$

$$N_{sig} = 0.86$$

$$N_{bkg} = 0$$

$$\frac{S}{\sqrt{S+B}} = 0.9$$
precision = 108%

WWF with $M_{\mu\mu}$

5 Inputs: P_t , thrust, $M_{\mu\mu}$, charge * $\cos\theta_{\mu^{\pm}}$

$$N_{sig} = 8.86$$

$$N_{bkg} = 0.01$$

$$\frac{S}{\sqrt{S+B}} = 3.0$$
precision = 34%

Summary

Significant progress in this analysis using new tools

	Zh	WWF
without $M_{\mu\mu}$	> 200%	108%
with $M_{\mu\mu}$	69%	34%

- MC stat., overtraining...

- separation doesn't help for improvement???

Plans:

Study without separation FSR study, re-weighting, search better way/variables...