Top electroweak couplings study using di-muonic state at $\sqrt{s}=500 \mathrm{GeV}$, ILC

Physics Meeting 0113

Yo Sato

Current status

Started analysis using DBD samples which include all effects.

- Kinematical reconstruction considering ISR/BS photons.

Method of considering ISR/BS photons

Collinear approximation :

Photons are emitted on the beam directions

4-momenta of electron/positron

$$
\begin{aligned}
\vec{e}^{-} & =\hat{\eta}_{e^{-}} E_{e^{-}} \\
\vec{e}^{+} & =\hat{\eta}_{e^{+}} E_{e^{+}}
\end{aligned}
$$

Before ISR/BS

$$
\begin{aligned}
& \vec{\gamma}_{e^{-}}=\hat{\eta}_{e^{-}} E_{\gamma_{e^{-}}}=k_{e^{-}} \vec{e}^{-} \quad \text { with } \\
& \vec{\gamma}_{e^{+}}=\hat{\eta}_{e^{-}}=\frac{E_{\gamma_{e^{-}}}}{E} E_{\gamma_{e^{+}}}=k_{e^{+}} \vec{e}^{+} \quad \text { with }
\end{aligned} k_{e^{+}}=\frac{E_{\gamma_{e^{+}}}}{E}
$$

$$
\left(\vec{e}^{-}\right)^{*}=\vec{e}^{-}-\vec{\gamma}_{e^{-}}=\hat{\eta}_{e^{-}} E\left(1-k_{e^{-}}\right)
$$

$$
\left(\vec{e}^{+}\right)^{*}=\vec{e}^{+}-\vec{\gamma}_{e^{+}}=\hat{\eta}_{e^{+}} E\left(1-k_{e^{+}}\right)
$$

After ISR/BS
\rightarrow Add $k_{e^{-}}, k_{e^{+}}$into minimization parameters

Method of considering ISR/BS photons

Thrust axis method

(1) Collect all hadronized particles from b and \bar{b} quark and photons from isolated leptons in the ILC frame
(2) Boost them to their rest frame and calculate thrust axis in this frame (defined as the BB frame in this slide)
(3) Boost the vectors along the thrust axis to the ILC' frame (ILC' frame : the frame in which head-on-collision occurs)

Preliminary results

$\boldsymbol{k}_{e^{-}}$distribution and deviation distribution

Preliminary results

Deviation distribution of $\boldsymbol{\phi}_{\mu^{+}}$

Summary and Plan

- Started analysis using the DBD samples.
- Get preliminary results of the kinematical reconstruction considering ISR/BS photons
\rightarrow Apply the Matrix element method to the DBD samples
- Study about background events.

Backup

χ^{2} algorithm : General

1. Define the χ_{μ}^{2};

$$
\chi_{\mu}^{2}=\chi_{\mu^{+}}^{2}+\chi_{\mu^{-}}^{2}, \quad \chi_{\mu^{ \pm}}^{2}=\left(\frac{E_{\mu^{ \pm}}^{* *}\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}} m_{W^{+}}, m_{W^{-}}\right)-m_{W^{ \pm}} / 2}{\sigma\left[E_{\mu^{ \pm}}^{* *}\right]}\right)^{2}
$$

The energy of $\mu^{ \pm}$in the $W^{ \pm}$rest frame, $E_{\mu^{ \pm}}^{* *}$, must be equal to $m_{W^{ \pm}} / 2$.
2. Define the δ_{b}^{2};

$$
\delta_{b}^{2}=-2 \log L_{b}-2 \log L_{\bar{b}}, L_{b}=\operatorname{CB}\left(E_{b}^{\text {meas. }}-E_{b}^{\text {rec. }}\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}\right)\right)
$$

The likelihood function is obtained from the assessment of b-jets energy.
3. Compound $\chi_{\mathrm{tot} .}^{2}$; $\chi_{\mathrm{tot} .}^{2}=\chi_{\mu}^{2}+\delta_{b}^{2}$

One minimizes the $\chi_{\text {tot. }}^{2}$ to obtain the optimal solution; $\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}\right)$.

χ^{2} algorithm : Optional

The direction of b-jets is obtained by thrust axis method.
\rightarrow Add 4 angles $\left(\theta_{b}, \phi_{b}, \theta_{\bar{b}}, \phi_{\bar{b}}\right)$ to the minimization parameters
\rightarrow Add constraints of 4 angles $\left(\theta_{b}, \phi_{b}, \theta_{\bar{b}}, \phi_{\bar{b}}\right)$ to $\chi_{\text {tot. }}^{2}$ as follows;

$$
\chi_{\text {direction }}^{2}=\chi_{\theta_{b}}^{2}+\chi_{\phi_{b}}^{2}+\chi_{\theta_{\bar{b}}}^{2}
$$

$$
\left(\chi_{\text {tot. }}^{2}\right)^{\prime}=\chi_{\text {tot. }}^{2}+\chi_{\text {direction }}^{2}
$$

We can use $\left(\chi_{\text {tot. }}^{2}\right)^{\prime}$ instead of $\chi_{\text {tot. }}^{2}$ to get the optimal solution, which is written in $\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}, \theta_{b}, \phi_{b}, \theta_{\bar{b}}, \phi_{\bar{b}}\right)$

