WIMP Search: Update

Moritz Habermehl

ILD Software / Analysis Meeting

25 January 2017

WIMPs in the Mono-Photon Channel

Signal

- WIMP pair production with a photon from initial state radiation $e^+e^- \rightarrow \chi \chi \gamma$
- quasi model-independent
- single photon in an "empty" detector
 - ightarrow missing four-momentum
- observables: E_{γ} , θ_{γ}

Main Background Processes

- Neutrino pairs $e^+e^- \rightarrow \nu \bar{\nu} \gamma$
 - irreducible
 - polarisation: enhance or suppress
- Bhabha scattering $e^+e^- \rightarrow e^+e^-\gamma$
 - huge cross section
 - · mimics signal if leptons are undetected
 - ⇒ requires best possible hermeticity in the forward region of the detector

Closing the Gap in the Bhabha Phase Space

- Bhabha samples used so far: Whizard (1) default cut:
 - invariant mass of all possible particle pairs > 4 GeV
 - $o heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle boost)
 - \Rightarrow at low θ : some part of BeamCal phase space is not covered

Closing the Gap in the Bhabha Phase Space

- Bhabha samples used so far: Whizard (1) default cut:
 - invariant mass of all possible particle pairs > 4 GeV
 - $o heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle boost)
 - \Rightarrow at low θ : some part of BeamCal phase space is not covered

Closing the Gap in the Bhabha Phase Space

- Bhabha samples used so far: Whizard (1) default cut:
 - invariant mass of all possible particle pairs > 4 GeV
 - $o heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle boost)
 - \Rightarrow at low θ : some part of BeamCal phase space is not covered
- new sample with $M_{inv} > 1 \text{ GeV}$ \Rightarrow gap is closed

-150-100-50 0

50 100 150

ø [DEG]

- observables: E_γ , θ_γ
- motivation for signal defining conditions
 - distinguish photon from noise: minimum E_{γ}
 - avoid large backgrounds at Z return (242 GeV for $\sqrt{s} = 500 \text{ GeV}$): maximum E_{γ}
 - distinguish photon from e⁻/e⁺
 - \rightarrow need tracker: maximum $cos(\theta)$
 - ensure that one e^-/e^+ in Bhabha events is detected: minimum $p_{T,\gamma}$

- previously
- observables: E_γ , θ_γ
- $E_{\gamma} > 10 \, \text{GeV}$
- motivation for signal defining conditions
- $E_{\gamma} < 220 \text{ GeV}$
- distinguish photon from noise: minimum E_x

- $|\cos \theta_{\gamma}| < 0.98$
- avoid large backgrounds at Z return (242 GeV for $\sqrt{s} = 500 \text{ GeV}$): maximum E_{γ}
- distinguish photon from e⁻/e⁺
 - \rightarrow need tracker: **maximum** $cos(\theta)$
- ensure that one e^-/e^+ in Bhabha events is detected: minimum $p_{T,\gamma}$

- previously
- observables: E_γ , θ_γ
- $\mathsf{E}_{\gamma} > 10\,\mathsf{GeV}$
- motivation for signal defining conditions
- $E_{\gamma} < 220 \text{ GeV}$
- distinguish photon from noise: minimum E₂

- $|\cos \theta_{\gamma}| < 0.98$
- avoid large backgrounds at Z return (242 GeV for $\sqrt{s} = 500 \text{ GeV}$): maximum E_{γ}

- 1 //
- distinguish photon from e⁻/e⁺
 → need tracker: maximum cos(θ)
- no explicit $p_{T,\gamma}$
- ensure that one e^-/e^+ in Bhabha events is detected: minimum $p_{T,\gamma}$
- $p_{T,\gamma}$ only indirectly via $E_{\gamma,min}$ and $\cos \theta_{\gamma}$: 2 GeV \Rightarrow parameter space can be enlarged by requiring
 - a certain p_{T,γ}
 - and loosening the $E_{\gamma,min}$ and $\cos\theta_{\gamma}$ conditions

- previously
- observables: E_{γ} , θ_{γ}
- $E_{\gamma} > 10 \, \text{GeV}$
- motivation for signal defining conditions
- $E_{\gamma} < 220 \text{ GeV}$
- distinguish photon from noise: minimum E₂

- $\cos \theta_{\gamma} | < 0.98$
- avoid large backgrounds at Z return (242 GeV for $\sqrt{s} = 500 \text{ GeV}$): maximum E_{γ}

- no explicit $p_{T,\gamma}$
- distinguish photon from e⁻/e⁺ \rightarrow need tracker: maximum $cos(\theta)$
- ensure that one e^-/e^+ in Bhabha events is detected: minimum $p_{T,\gamma}$
- $p_{T,\gamma}$ only indirectly via $E_{\gamma,min}$ and $\cos \theta_{\gamma}$: 2 GeV parameter space can be enlarged by requiring
 - a certain p_{T,γ}
 - and loosening the $E_{\gamma,min}$ and $\cos \theta_{\gamma}$ conditions
 - \Rightarrow BUT: $p_{T,e^-/e^+}$ does not cover BCal opening:
 - $p_{T,e^-/e^+} > 2 \text{ GeV}$ translates into $\theta_{e,min} = 0.42 \text{ deg}$ Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 25 Jan 2017 | 4

BeamCal Laver 8

Phi Dependent Signal Definition

 in order to describe BeamCal hole best: go to **phi dependent** signal definition

- cuts can be easiest defined in BeamCal coordinate system
 - $p_{T,e} > 5.2 \text{ GeV for } |\phi| \ge 141.5$

$$\Leftrightarrow$$
 p_{T,\gamma} > 5.2 GeV for $|\phi| \le 38.5$

• $p_{T,e} > 2.06 \,\text{GeV}$ for $|\phi| < 141.5$

$$\Leftrightarrow \ \ p_{\mathcal{T},\gamma} > 2.06 \ \text{GeV for } |\phi| > 38.5$$

Phi Dependent Signal Definition

 in order to describe BeamCal hole best: go to **phi dependent** signal definition

- cuts can be easiest defined in BeamCal coordinate system
 - $p_{T,e} > 5.2 \,\text{GeV}$ for $|\phi| \ge 141.5$

$$\Leftrightarrow$$
 p_{T,\gamma} > 5.2 GeV for $|\phi| \le 38.5$

• $p_{T,e} > 2.06 \text{ GeV for } |\phi| < 14\overline{1.5}$

$$\Leftrightarrow$$
 p_{T,\gamma} > 2.06 GeV for $|\phi|$ > 38.5

- for signal definition boost photon into BeamCal frame (7 mrad along negative x axis)
 - a possible p_T shift during the boost is taken into account
 Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 25 Jan 2017 |

Signal Definition: Efficiency

- look at $\nu\bar{\nu}\gamma$ with e⁻: L, e⁺: R
 - loosen conditions: $E_{\gamma} > 9 \text{ GeV}$ and $|\cos \theta_{\gamma}| < 0.9$
 - at moment constraint by preselection cuts
 - preselection cuts $E_{\gamma} > 8 \text{ GeV}$ and $|\cos \theta_{\gamma}| < 0.995$

	signal definition	fiducial cross-section
	$E_{\gamma} >$ 10 GeV	
previously	$ \cos heta_{\gamma} < 0.98$	8011 fb
	$E_{\gamma} <$ 220 GeV	
	no explicit p $_{T,\gamma}$	
	$E_{\gamma} > 9 \text{GeV}$	
	$ \cos \theta_{\gamma} < 0.99$	
now	$E_{\gamma} <$ 220 GeV	9342 fb
	$p_{T,\gamma}$: 5.2 GeV for $ \phi \le 38.5$	
	2.06 GeV for $ \phi > 38.5$	

Bhabha Background Suppression

- selection criteria
 - veto events with track with $p_T > 3$ GeV
 - additional visible energy < 20 GeV (PFOs)
 - no cluster in BeamCal
- suppression efficiency
 - preliminary! (partially only small test samples)
 - all normalised to signal definition of "invariant mass > 4 GeV" sample

$e^+e^-\gamma$	$M_{inv} > 4 \text{ GeV}$	$M_{inv} > 4 GeV$	$M_{\mathit{inv}} > 1GeV$	$M_{\mathit{inv}} > 1GeV$
	Christoph Bartels	old sig def	old sig def	new sig def
	ilcsoft v01-06	ilcsoft v01-16		$(p_{\mathcal{T}},\ \phi\text{-}dep.)$
sig.def.	100%	100%	235%	375%
p_T	21.1%	26.1%	14.7%	161.0%
E_{vis}	16.0%	1.9%	3.6%	37.3%
BCal	0.29%	0.02%	0.07%	0.45%

BeamCal and L* I

- How does the L* change request influence the Bhabha suppression?
- How does the number of missed Bhabhas change if BeamCal is moved along the z axis?
 - \rightarrow rough estimate
- idea: apply a hard theta cut: inside nothing is reconstructed, outside everything
- which θ_{eff} cut mimics the BeamCal reconstruction ?
- with $\theta_{\it eff} = 8.62\,{\rm mrad}$ the same rate is obtained as in full analysis

BeamCal and L*: Old Results

- assume purely geometrical dependence (i.e. ignore shape of Beamstrahlung pair cone)
- ullet grows when BeamCal is moved closer to IP
- ILD_o1_V05
 - $\theta_{eff,ILD} = 15.94 \text{ mrad}$
 - $z_{BCal,ILD} = 3486 \text{ mm}$
- if BeamCal is moved in by 40 cm
 - $z_{BCal,L*} = 3086 \text{ mm}$
 - $\theta_{eff} = 18.01 \text{ mrad}$

approx. 3-4 times more Bhabhas are missed

BeamCal and L*: New Results

- assume purely geometrical dependence (i.e. ignore shape of Beamstrahlung pair cone)
- θ_{eff} grows when BeamCal is moved closer to IP
- II D o1 V05
 - $\theta_{eff,ILD} = 8.62 \text{ mrad}$
 - $z_{BCal,ILD} = 3486 \text{ mm}$
- if BeamCal is moved in by 40 cm
 - $z_{BCal,L*} = 3086 \text{ mm}$
 - $\theta_{eff} = 9.74 \text{ mrad}$

approx. 2 times more Bhabhas are missed

Conclusions

- with the new Bhabha sample...
 - the gap in phase space is closed
 - a realistic estimate of the Bhabha background is possible
- with the new signal definition...
 - Bhabhas really hit the detector
 - a realistic estimate of the Bhabha background is possible
- with a signal definition based on p_{T,γ}...
 - more signal $(\nu \bar{\nu} \gamma)$ events can be regained
 - the Bhabha suppression level is (only) a bit worse
- beware: this is preliminary and the full impact of all this is under study

