

Outline

Motivation for Searching Light Higgsinos with Small ΔM

***** From experimental point of view:

- LHC already excluded large regions with large
 ΔM = M(NLSP) M(LSP)
- Remaining region with compressed spectrum very small visible energy release, near impossible to probe at LHC
 - → ILC is essential

From theoretical point of view: Compressed Higgsino spectra related to

naturalness [e.g. arXiv:1212.2655, arXiv:1404.7510]

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu$$

To maintain small electroweak fine tuning ΔEW (<~3%), all contributions on right-hand-side should be comparable to M(Z) → requires μ ~ 100-300 GeV

top and bottom squarks in the few TeV regime, gluino mass 2–4 TeV, 1st, 2nd generation squarks and sleptons in the 5–30 TeV regime

- μ feeds mass to both SM (W, Z, h) and SUSY particles (Higgsinos)
- Higgsino masses not too far from masses of W, Z, h (~100 GeV)

3

Goal of Light Higgsino Study

This study

Demonstrate measurement precision of Higgsino masses and production cross sections

Serve as a basis for future discussions of ILC run scenario in the case of new particles being discovered

Results of masses and cross sections

(= "observables") as input

S.-L. Lehtinen (DESY) et al

determine SUSY parameters

e.g. M_1 , M_2 , μ , tan β

- Why?
- To get info about unobserved sparticles To test GUT-scale models
- How?
- Global χ^2 fit of to observables

Study required input parameters and precisions; interplay with Higgs precision measurements

Benchmarks in this Study

$v_s = 500 \text{ GeV}$, full ILD detector simulation

RNS model (Radiatively-driven natural SUSY)

- 4 light Higgsinos:
 - $\widetilde{\chi}_1^0$ $\widetilde{\chi}_2^0$ $\widetilde{\chi}_1^+$ $\widetilde{\chi}_1^-$
- **ΔM complies with naturalness** (no need for ISR tag)

(LSP)

Benchmarks with smaller ΔM are drawing attention ,

as ILC1 is (almost) excluded by LHC

- At last general meeting, showed preliminary contents related to ILC2 (ΔM~10 GeV)
- Now finishing analysis and reconfirming results, in preparation for publication
- even more challenging benchmark (nGMM1) is in progress , with $\Delta M < 5 \text{ GeV}$ (next page)
- Also further optimize ILC1 (to be included in publication)

NUHM2 model parameters

[arXiv:1404.7510]

Benchmark	ILC1	ILC2
M ₀ [GeV]	7025	5000
M _{1/2} [GeV]	568.3	1200
A ₀ [GeV]	-10427	-8000
tanβ	10	15
μ [GeV]	115	150
M _A [GeV]	1000	1000
M(χ ₁ ⁰) [GeV]	102.7	148.1
$M(\chi_1^{\pm})$ [GeV]	117.3	158.3
ΔM(N ₂ ,N ₁)	21.3	9.7
M(χ ₂ ⁰) [GeV]	124.0	157.8
ΔM(C ₁ ,N ₁)	14.6	10.2

Defined at GUT scale, Defined at weak scale Observables

5

analyzing more challenging benchmarks with smaller ΔM

Despite reduced visible energy, doable without large change in analysis strategies Higgsino mass precisions $< \sim 1\%$ (H20) should be achievable

Masses [GeV] from	LHA files:			S	- , , , , , , , , , , , , , , , , , , ,				
	ILC1	ILC2	nGMM1	Ge/	4 - 4			ILC1 e	, e _R
M(N1)	102.7	148.1	151.4	/ (J	3 - []			ILC2 e	, e ⁺
M(N2)	124.0	157.8	155.8	(fb)]			11 e ⁺ _L e ⁺ _R -
ΔM(N2,N1)	21.3	9.7	4.4	tion	2			ICIMIN	
M(C1)	117.3	158.3	158.7	Sect	_ _ 1 → _				-
ΔΜ(C1,N1)	14.6	10.2	7.3	SSC				مریک مرکز میکی میکی میکی میکی میکی از میکی از میلی میلی از میلی میلی میلی میلی میلی میلی میلی میل	-
				Ŭ		20 Di-	40 lepton E	60 inerav ((80 GeV)

6

Cross sections [fb] for \sqrt{s} =500 GeV with TDR beam parameters , Event Generator: WHIZARD v1.95, DBD setup)

Process (Pe-,Pe+)	ILC1	ILC2	nGMM1
C1C1 (-1,+1)	1799.9	1530.5	1520.6
C1C1 (+1,-1)	334.5	307.2	309.5
N1N2 (-1,+1)	490.9	458.9	463.5
N1N2 (+1,-1)	378.5	353.8	357.3

Event Selection

Neutralino mixed production with leptonic decay $e^+e^- \rightarrow \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$

- Reconstruct two leptons (ee or μμ) which originate
 from Z^{*} emission in decay of χ₂⁰ to χ₁⁰
- Major residual bkg. are 4f processes accompanied by large missing energy (vvll)
- 2- γ processes are removed by BeamCal veto, cuts on lepton track p_T , and coplanarity

Chargino pair production with semileptonic decay $e^+e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 q q' \ell \nu$

- Reconstruct two jets which originate from W^{*} emission in decay of χ₁[±] to χ₁⁰
- Use lepton (e or μ) from the other chargino as tag
- BeamCal veto, cuts on missing p_T, # of tracks, # of leptons, and coplanarity remove almost all bkg. (signal significance > 100)

signal $\tilde{\chi}_1^0$ e Z $\tilde{\chi}_2^0$

Extraction of Higgsino Mass and Cross Section

Mass:

- Kinematic edges of dilepton/dijet energy and invariant mass are functions of $\sqrt{}$ s and Higgsino masses

(requires correction for detector resolution)

Cross section:

Count number of events under dilepton / dijet energy

• Use Toy Monte Carlo to obtain mass and cross section precisions

Marlin reconstruction using different ILCSoft Versions (jet variables) Se

Semileptonic events, μ -tagged

v01-16-02, the original v01-17-08, v01-17-11 no overlay bkg included

• no huge big difference in variables of jets (e.g. E_dijet, coplanarity) or tagged leptons (E_lepton)

Issue of gamma gamma \rightarrow low Pt hadrons ("overlay BKG")

Edijet (mu tagged semileptonic), ILC2 (Marlin Reco with v01-17-11)

• SM bkg has overlay : eventually, need to investigate if conservative

Summary for Light Higgsino Study

Goal: evaluate measurement precision of masses and cross sections of light Higgsinos with small ΔM (from ~20 GeV down to ~ 5 GeV) at ILC vs = 500 GeV

• Motivated by both experiment (complementary to LHC) and theory (naturalness)

This analysis: **neutralino mixed production** $(\chi_1^0 \chi_2^0)$ and **chargino pair production** $(\chi_1^+ \chi_1^-)$ Full ILD detector simulation, (Pe-, Pe+) = (-0.8,+0.3), (+0.8, -0.3)

• results become input to SUSY parameter determination

Since last General Meeting, made **progress in analysis of benchmarks with smaller** ΔM *some channels still in progress*

19

- ILC2 ($\Delta M \sim 10 \text{GeV}$): able to obtain similar precisions as ILC1
- nGMM1 ($\Delta M \lt \sim 5 \text{ GeV}$): also better than a few %

Currently obtained statistical precisions: Assuming H20

- Mass : $< \sim 0.5\%$ (ILC1, ILC2) $< \sim 1.5\%$ (nGMM1)
- Cross section : 1–1.5% (ILC1, ILC2)

Plans

- redo Marlin Reco (and all analysis) with v01-17-11
- Finish/finalized analysis for all benchmarks

→ move towards publication of a **paper including all 3 benchmarks** theory, analysis, and SUSY parameter extraction

- study deviation of central value of Higgsino masses from "truth" effect of **jet energy resolution**, possibly identify and remove ISR from jets
- Study potential for treating overlay bkg
- Study low pt tracking tools in new ILCSoft → improve **lepton tagging efficiency**
- Light Higgsino analysis at lower ECM (250 GeV)

Thank you for listening

