JET CLUSTERING USING (REAL) NEURAL NETWORK (VERY PRIMITIVE)

Masakazu Kurata 02/04/2017 **METHOD**

• NN: parameters are changed track by track

- Do not(cannot) consider a correlation of parameters
- So, change all the parameters at once

o Jade distance measure brings some changes
 →jet mass is sensitive to form jets?

• So, define an objective function:

$$L = \sum_{i} m(jet)_{i}^{2} = \sum_{i,j,k} w_{ij} w_{ik} (E_{j}E_{k} - \overrightarrow{p_{j}} \cdot \overrightarrow{p_{k}})$$

constraints: $0 \le w_{ij} \le 1$, $\sum_{i} w_{ij} = 1$
i: jet number, j,k: track number

minimize L under the constraints

• This can be realized using same way as kinematic fit

- Need Lagrange multipliers method
- Need first and second derivatives of parameter wij
- Jacobian matrix is sparse, so not difficult to solve
- Just O(10) iteration is necessary(NN: O(1000) iteration)
 - Can obtain result in less CPUtime

PRELIMINARY RESULTS

- o Using qqhh→qq(bb)(bb): 6 jet clustering
 - Use same event as original Durham clustering
 - Jet matching with MC truth is performed(cos heta >0.9 for all the b jets)

0.2 0.4 0.6 0.8

(E(MC)-E(jet))/E(MC)

-0.4 -0.2 0

MASS DISTRIBUTION

• Improvement is far from enough!!

o Prospect

 We can obtain "answer" for each particle → can we have some hint??

STATUS

• Now, we can use "supervised" Neural Network

- Can we use it to improve track assignment efficiency to jets?
- Try to introduce (real) neural network to assign tracks into each color singlet state
- Cannot use TMVA because it is a binary classifier
 - Need to introduce (tricky) idea to use it
 - So, create network architecture by my own
- Maybe, Deep Learning is necessary
 - Simple way is to add extra hidden layer(s) to the network

NETWORK ARCHITECTURE(SCHEMATIC)

• 4-layers' neural network

- Assign tracks to highest probability jet
- o Input: so far, very primitive
 - Jet 4-momentum coming from Durham jet clustering
 - Durham distance measure between tracks
 - Track 4-momentum

NOTATION

• Numbering jets: counter-clockwise direction on (ϕ , π /2- θ)

7

VERY PRELIMINARY RESULTS

- Using 15 ZHH \rightarrow (qq)(bb)(bb) events: 6 jet assignment
- Train network with 15 events
- Check assignment efficiency using same events
- How many tracks can be assigned correctly

	jet1	jet2	jet3	jet4	jet5	jet6
NN	306	258	225	254	203	129
Durham	275	249	187	233	221	181
Total tracks	470	363	360	391	355	242

- Energy fraction of main color singlet state
 - Mean over 15 events

%	jet1	jet2	jet3	jet4	jet5	jet6
NN	82.4	87.9	81.6	79.7	74.2	71.6
Durham	72.8	68.9	67.3	80.1	72.3	73.6

PROBLEMS

- Of course, general Neural Network problems are applied
 - Over-fitting(over training) to training events: cannot apply to test events
 - Training will take much CPUtime
 - But, when training is completed, applying it is very fast

• And, there is jet clustering specific problem

- Can this be directly applied to other 6-jet events?
 o e.g.) ZZZ and ZZH can be reconstructed well too.
- At least, 4-jet and 6-jet trainings are necessary

PROSPECTS

• Can we extract some features from these pictures?

- Look like image processing…
- Convolutional neural network?

