

ILD ANALYSIS & SOFTWARE MEETING - 8TH FEB

TOP QUARK MASS MEASUREMENT USING RADIATIVE EVENTS – STATUS AND OUTLOOK

M. BORONAT*, E. FULLANA*, J. FUSTER*, I. GARCÍA*, <u>P. GOMIS*</u>, A. H. HOANG°, V. MATEU⁺, M. PERELLÓ*, E. ROS*, M. A. VILLAREJO*, M. VOS*

* IFIC (UNIVERSITAT DE VALÈNCIA/CSIC) ⁺ UNIVERSIDAD DE SALAMANCA

° UNIVERSITÄT WIEN

BRIEF RECAP: OBSERVABLE & PARTON/ PARTICLE RESULTS

INTRODUCTION TO THE OBSERVABLE: ISR

• The idea is to measure the top-quark mass (m_t) measuring the differential cross section of the process $e^-e^+ \rightarrow ttbar \gamma_{ISR}$

The ttbar production cross section is sensitive to the center of mass energy and m_t

- The emitted γ_{ISR} reduce the available energy for the ttbar production
- Therefore the ttbar production cross section is sensible to the emitted ISR photon energy in the ttbar + γ_{ISR} production

INTRODUCTION TO THE OBSERVABLE: ISR (II)

- m_t can be measured by counting the ttbar events produced for a certain s' (i.e ISR energy photon, which can be measured with high precision)
- Our observable $B(m_t, \zeta_{s'})$ is the differential cross section of the ttbar production as a function of $\zeta_{s'} = \sqrt{s'}$

$$B(m_t, \zeta_{s'}) = \frac{d\sigma_{t\bar{t}\gamma}}{d\zeta_{s'}} \longrightarrow \zeta_{s'} = \sqrt{s'}$$

$$s' = s \left(1 - \frac{2E_{\gamma}}{\sqrt{s}}\right)$$

$$g_{p_{1.8}}^{0} = 166.7 \text{ GeV} - \frac{1}{\sqrt{s}} = 168.8 \text{ GeV} - \frac{1}{\sqrt{s}} = 173.0 \text{ GeV} - \frac{1}{\sqrt{s}} = 173.0 \text{ GeV} - \frac{1}{\sqrt{s}} = 175.1 \text{ GeV} - \frac{1}{\sqrt{s}} = 177.1 \text{ GeV} - \frac{1}{\sqrt{s}} = 179.2 \text{ GeV} - \frac{1}{\sqrt{s}} = 179.2 \text{ GeV} - \frac{1}{\sqrt{s}} = \frac{1}{\sqrt{s}}$$

• The observable is more sensitive to m_t near the top production threshold, and the dependence diminishes as $\zeta_{s'}$ grows

RESULTS AT PARTON LEVEL

PARTON LEVEL STUDY: PROCEDURE

A study to test the potential of the observable was produced using Pythia 8.1

 $3(m_{t},\zeta_{s'}) = d \sigma_{t_{t+\gamma}}/d \zeta_{s'}$ (fb)

- e⁻e⁺ → ttbar unpolarized
 events with ISR were
 produced at parton level
- From the energy spectrum of the ISR photons we obtained the observable curves

- For the study we produced reference curves (with high statistics) and datasets (for certain luminosities)
- A template fit of N (~100 500) datasets to the reference curves was performed in order to estimate the observable's sensitivity

PARTON LEVEL STUDY: RESULTS

- From these template fits the top quark mass is estimated as the mean of the distribution and its error as the standard deviation
- The input MC mass is m_t = 173.1 GeV

s = 500 GeV	Reconstructed mass	
Integrated Luminosity	m _t (GeV)	Δm _t (MeV)
500 fb ⁻¹	173.158	155
1000 fb ⁻¹	173.140	103
2600 fb⁻¹	173.133	61

RESULTS AT PARTICLE LEVEL

PARTICLE LEVEL STUDY: PROCEDURE

- To increase the realism of the study, photons are identified using selection criteria
- Only photons with polar angle 7° < θ < 173° are considered, due to detector coverage
- As high-energy ISR emission is usually collinear to the emitter, a good portion of the statistics are lost

	380 GeV	500 GeV	1000 GeV
ISR lost	71%	74%	79%

- ISR photon are separated from photons originated in the decay chain of particles by imposing energy ($E_{\gamma} > E_{0}$) and isolation angle cuts ($\phi > \phi_{0}$)
- The following cuts are chosen:

Cut	380 GeV	500 GeV	1000 GeV
Eo	3	10	30
ጥ 0	8°	8°	4°

PARTICLE LEVEL: RESULTS

Similarly to the parton study, the reference curves are constructed to perform template fits over N datasets (with m_t = 173.1 GeV), resulting in:

s (GeV)	Luminosity (fb ⁻¹)	m _t (GeV)	Δm _t (MeV)
380	500	173.141	100
500	500	173.327	294
500	4000	173.122	100
1000	1000	173.381	639
1000	3500	173.197	388

FULL SIMULATION STUDY: STATUS

WORK IN PROGRESS: COMPREHENSIVE STUDY

12

- Given that the observable shows great potential a comprehensive study is being done
- A theoretical framework in a well defined mass scheme is being developed by A. H. Hoang and V. Mateu
- Studies to correct the effects of the luminosity spectrum smearing are being performed
- To accommodate detector effects full simulation DST samples of 6f_ttbar at ILD have been examined
- We are revisiting (and reoptimizing) the selection criteria for the photon-like PFOs in the full simulation sample

THEORETICAL MODEL

A factorization theorem valid at O(a_{QED}) and to all orders in a_s (beyond perturbation theory) has been stablished by A. H. Hoang and V. Mateu in which the observable can be calculated analytically:

$$B(m_{t}, \zeta_{s'}) = \sigma_{ISR}(s) * \sigma_{ttbar}(m_{t}, s')$$

- A simple calculation taking the inclusive e⁻e⁺ → ttbar cross section at tree level has ⁶ been successfully performed (crosschecked with Pythia) to prove the concept ²
- Work in progress:

- Perform an analytic computation of the complete e⁻e⁺ → ttbar γ process to pin down how much ISR dominates over FSR plus ISR/FSR interference terms
- Interface TOPPIK with the factorization theorem to explore the region of best mass sensitivity

and fixed to nominal value, nonetheless, in linear accelerators the luminosity spectrum is smeared

- A temporal solution with a bin by bin correction is currently available
- When applying the correction to a dataset with beamstrahlung and $m_t = 173.25$ GeV and perform the template fit, the mass gets shifted by $30 \text{ MeVs} (m_{FIT} = 173.279 \text{ GeV})$

- Work in progress:
 - A more robust correction will be implemented by folding the luminosity spectrum with the theoretical calculation in the future
 - The propagation of the luminosity spectrum uncertainty to the correction has yet to be implemented

LUMINOSITY SPECTRUM

Cross section as a function of s'

DETECTOR CONSIDERATIONS

- To estimate detector effects we are studying 6f_ttbar DST samples decaying in semileptonic channels generated with ILCSoft v01-16p05_500 (10.8 M events, available at the ILCdirac framework)
- Following the ISR MC truth photons in the simulation we find:
 - Detection efficiency is flat in energy (~80%), angularly ranging from 70% in the endcap to 90% in the petals and the barrel
 - Energy resolution found differ significantly to the nominal value of the ECAL
- These sub-optimal efficiencies and resolutions can be explained by the "scattering" of photons into multiple particles by PandoraPFO in these samples
- New samples with the improved PandoraPFO are needed in order to reevaluate the detector effects

OPTIMIZING THE SELECTION: PARTICLE LEVEL

- In order to maximize the purity of the selection we studied the optimal selection of ISR photons
- As we expect the detector only to smear the energy resolution of the photons, we study the optimization the selection at particle level (Whizard 2.3.0)
- Finally, we select as ISR photon the most energetic photon-like PFO in the visible region ($6^{\circ} < \theta < 174^{\circ}$) that has more than 30 GeV of energy and its isolated by at least 8°

P. Gomis (Pablo.Gomis@ific.uv.es) @ ILD Analysis & Software meeting - 08/02/2016

APPLYING THE SELECTION ON THE FULL SIM.

- As many other particles appear as a result of decays in the detectors, isolation angle is no longer a good observable to perform the selection cuts
- A scan to reoptimize the selection in the full simulation is performed, finding these cuts as optimal: $6^{\circ} < \theta < 174^{\circ}$, E > 30 GeV, P_t < 120 GeV,

%E (< 2°) < 10%, %E (< 5°) < 10%, %E (< 10°) < 20%

(Total sample size 10798846 events) 10000 With this selection we achieve SR MC Truths efficiencies of ~92% and purities Selected PFOs 8000 around ~60% 6000 A significant number of high energy photon-like PFOs not 4000 present in the WHIZARD simulations appear in the full Os that correspond to ISR MC Truths 2000 simulation sample Selected non-ISR PFOs 360 380 400 420 460 500 ζ_≪(GeV)

SELECTION: PRELIMINARY RESULTS

By looking for an isolated lepton as an extra criteria in the selection (as these are semileptonic decays), the background in our selection is highly reduced

FULL SIMULATION STUDY: OUTLINE

NEXT STEPS

- Cluster the 6f_ttbar sample in 4-jets and B-tag them in order to reconstruct the ttbar pairs, and include the reconstruction process into the selection criteria
- Further investigate the high energy photon-like PFOs found in the full simulation sample: launch some ILCDirac jobs to track them down to their parton/particle level parents
- Reevaluate detector effects with the new full simulation samples when they become available

NEXT STEPS

- Take into account the uncertainty of the luminosity spectrum to properly eavluate the systematics due to the luminosity smearing
 - A new postdoc in our group (E. Fullana) is trying to reproduce the results from André Sailer thesis in order to produce estimators for the uncertainties at different energies
- Once the theoretical framework is ready to go:
 - Correct the luminosity spectrum smearing by folding it with the theoretical calculation, instead of using the bin by bin correction
 - Fit the full simulation data samples to the theoretical model to find a good estimator of what can be achievable in the actual experiment

SUMMARY

- As seen in the parton and particle level studies, we can obtain measurements in the order of 100-200 MeVs of statistical precision for the different phases of ILC/CLIC in the continuum
- By combining the ISR (photon) and FSR (extra jet) measurements we expect to have a final resolution of the top quark mass in the order of 100 MeVs
- A comprehensive full simulation study is under development:
 - Evaluating and correcting the systematics (selection criteria, luminosity spectrum smearing, theoretical uncertainties)
 - Impact of the detector: new samples with the newer PandoraPFA version are needed to reevaluate the impact of the detector
- In all these studies we assumed unpolarized beams, considering them will result in a good increase of the statistics

THANKS FOR YOUR ATTENTION