Study Plan to e+e- ->γh Process Yumi Aoki(SOKENDAI)

Outline

1.Motivation

- 2. Theoretical framework
- 3.Method
- 4. Simulation & Analysis Schedule

.

- 5.Tools
- 6.Practice

1.Motivation

1. Find new physics via H $\gamma\gamma$ and H γ Z couplings 2. H γ Z is needed for <u>ZH/ZHH measurements</u>

If we get different values of coupling constants w.r.t. SM, we get the key to new physics.

2. Theoretical framework

effective Lagrangian for $e+e- \rightarrow \gamma H$

 $c_{\gamma Z}$: effective coupling between Higgs and γZ c_{γ} : effective coupling between Higgs and $\gamma \gamma$

 Λ : effective new physics scale

2. Theoretical framework

partial decay width:

$$\Gamma_{\gamma\gamma} = \frac{M_H^3}{64\pi} \left(\frac{c_{\gamma}}{\Lambda}\right)^2$$

$$\Gamma_{\gamma Z} = \frac{M_H^3}{128\pi} \left(\frac{c_{\gamma Z}}{\Lambda}\right)^2 \left(1 - \frac{M_Z^2}{M_H^2}\right)^3$$

SM predication

 $\Gamma_{YZ}: 6.25 \times 10^{-3} \text{ MeV} \longrightarrow c_{YZ} / \Lambda = 1.26 \times 10^{-2} / \text{ TeV}$ $\Gamma_{YY}: 9.27 \times 10^{-3} \text{ MeV} \longrightarrow c_Y / \Lambda = 9.54 \times 10^{-4} / \text{ TeV}$

3.Method

Measure the cross sections of e+e- ->γh for at least two different beam polarizations

.

- > So that C_{γ} and $C_{\gamma}Z$ can be determined separately
- Use recoil mass method to measure the cross sections of e+e- ->γh

4. Simulation & Analytics Schedule

5.Tools

- signal generator :physsim
- Detector simulation : Mokka
- Low level)Event reconstruction : MarlinReco, PandoraPFA
- High level Event reconstruction : LCFI+, Isolated photon finder, jet clustering
- back ground : TDR sample

Practice

- Practice using physsim(Zh process)
- Study about physics and simulation
- make graph √s vs σZh ←Now -100%,+100%,-80%+30%
- ② When e-:-100%(left-handed), e+=0 , calculate σ ->calculate σ (e-:+100%)
- (3) When e-:+100%(right-handed), e+=0 , calculate σ -> e-:+100%(right-handed), e+=-100% , calculate σ

④ (pe-,pe+) -> σ

⑤ When ∫⊥=500[fb-1] & -100% or +100%, calculate number of event of Zh

6.Practice

 $\sqrt{s[GeV]}$

Thank you for listening