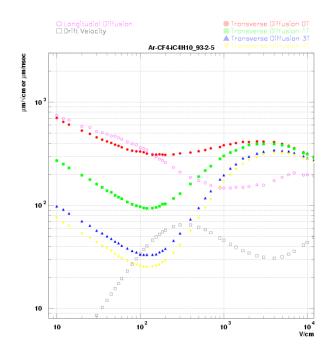
TPC for ILD

DD4HEP: Point Resolution

Dimitra Tsionou LCTPC WP meeting, 2-March-2017

TPC resolution parametrisation

- Looking into the digitisation of TPC
 - Gas parametrisation enters here
- Comparing between current input and gas measurements/simulation


	Current	T2K	TDR
Dt [μm/√cm] 4T	25	27.6	67
Dt [µm/√cm] 3.5 T	25	31.7	75
DI [μm/√cm]	375	226	276
Neff	22	40	
σ _{rφ,0} [μm]	50	71	
σ _{z,0} [μm]	400	306	

- For T2K gas, the Neff and sigma values come from measurements
 - A Time Projection Chamber with GEM-Based Readout
- > T2K and TDR diffusion constant values from simulation provuded by Felix
- Measurments show we can do better in z and similar in rq

Additional material

> Plot from Ron on input values

> TPC resolution as appears in DBD

TPC
$$\sigma_{r\phi}^2 = (50^2 + 900^2 \sin^2 \phi + ((25^2/22) \times (4T/B)^2 \sin \theta) (z/\text{cm})) \, \mu\text{m}^2$$

$$\sigma_z^2 = (400^2 + 80^2 \times (z/\text{cm})) \, \mu\text{m}^2$$

where ϕ and θ are the azimuthal and polar angle of the track direction

TPC Digitisation Code

> TPC resolution as actually coded

$$\sigma_{r\phi}^2 = \sigma_{0,r\phi}^2 + pointResoPadPhi^2 \cdot \sin_{\phi}^2 + \frac{D_t^2}{N_{eff}} \cdot \sin\theta \cdot \frac{6}{pad\ height} \cdot \frac{4}{B} \cdot z \tag{1}$$

$$\sigma_z^2 = \sigma_{0,z}^2 + \frac{D_l^2}{N_{eff}} \cdot z \tag{2}$$

$$\sigma_{r\phi}^2 = 50^2 + 900^2 \sin_{\phi}^2 + \frac{25^2}{22} \sin \theta \frac{6}{pad \ height} \frac{4}{B} \cdot z \tag{3}$$

$$\sigma_z^2 = 400^2 + 80^2 \cdot z \tag{4}$$

> TPC resolution as appears in DBD

TPC
$$\sigma_{r\phi}^2 = (50^2 + 900^2 \sin^2 \phi + ((25^2/22) \times (4T/B)^2 \sin \theta) (z/\text{cm})) \, \mu\text{m}^2$$

$$\sigma_z^2 = (400^2 + 80^2 \times (z/\text{cm})) \, \mu\text{m}^2$$

where ϕ and θ are the azimuthal and polar angle of the track direction

Back-Up

