Small Updates on $h \rightarrow \mu^+ \mu^-$ @ 500 GeV

Shin-ichi Kawada (DESY) 2017/February/22 ILD Analysis/Software Meeting

Quick Introduction

• $h \rightarrow \mu^+ \mu^-$ @ 500 GeV is selected as the one of the physics benchmark process of ILD optimization.

we have agreed on

performance of new detector models will be evaluated eventually based on physics performance

process	physics	detector performance	Ecm
H—>cc	BR	c-tag, JER	any
Η—>μμ	BR	high P tracking	500 GeV
Η—>ττ	BR, CP	τ recon., PID, track separation	250 GeV
H—>bb	M _H , BR	JES, JER, b-tag	500 GeV
H—>invisible Z—>qq	Higgs Portal	JER	250 GeV
evW—>evqq	M _w , TGC	JES, JER	500 GeV
tt-bar—>6-jet	top coupling, AFB	b-tag, jet charge	500 GeV
$\chi_1^+\chi_1^-, \chi_2^0\chi_1^0$ near degenerated	natural SUSY	low P tracking, PID	500 GeV
γXX	WIMPs	Photon ER & ES, Hermiticity	500 GeV

**this is just a minimum list

Signal signal: $e^+e^- \rightarrow \nu \bar{\nu} h, h \rightarrow \mu^+\mu^-$ Zh WW-fusion (WWF) e^{-} \mathcal{V}_{e} 11 W^{\cdot} W^+ e^+ $\overline{\nu_e}$ e^+

BR($h \rightarrow \mu^+ \mu^-$) ~ 2.2*10⁻⁴ expected # events: ~60 with 1600 fb⁻¹, $P(e^-, e^+) = (-0.8, +0.3)$ ("H20" scenario)

Reminder

- Last talk (Jan./11)
 - Fully-simulated samples with DBD configuration
 - Implemented IsolatedLeptonTagger
 - Developed efficient precuts
 - Separation: Zh and WWF (WW-fusion)
 - TMVA analysis

Progress/Updates

- Found a stupid bug. Some MC events were not included.
- Re-do TMVA analysis
- With/Without separation (Zh/WWF/Mixed)

Try & Error with TMVA(BDTG)

- Usually gives better results than cut-based
 - Half of MC are used for training and other for testing
 - Low MC stat...
- Mostly determined by $M_{\mu\mu}$, I tried without and with $M_{\mu\mu}$
- 3 cases (Zh/WWF/Mixed)

Zh without $M_{\mu\mu}$

6 inputs: E_{vis} , P_t , thrust, $\cos \theta_{thrust}$, charge * $\cos \theta_{\mu^{\pm}}$

Zh with $M_{\mu\mu}$

6 inputs: P_t , thrust, $\cos \theta_{thrust}$, $M_{\mu\mu}$ charge * $\cos \theta_{\mu^{\pm}}$

 $N_{sig} = 2.43$ $N_{bkg} = 0.05$ $\frac{S}{\sqrt{S+B}} = 1.5$

precision = 65%

Signal purity

S/\S+B

0.2

0.4

Cut value applied on BDTG output

0.6

0.8

0

Signal efficiency*purity

1.6

1.2 ່ທີ

0.8

0.6

0.4

WWF without $M_{\mu\mu}$

5 inputs: E_{vis} , P_t , thrust, charge * $\cos \theta_{\mu^{\pm}}$

8.0 Significanc

0.6

WWF with $M_{\mu\mu}$

5 inputs: P_t , thrust, $M_{\mu\mu}$, charge * $\cos \theta_{\mu^{\pm}}$

3.5

2.5 0

1.5

0.5

Mixed without $M_{\mu\mu}$

6 inputs: E_{vis} , P_t , thrust, $\cos \theta_{thrust}$, charge * $\cos \theta_{\mu^{\pm}}$

Signal purity

S/VS+B

0

0.2

0.4

0.6

0.8

Signal efficiency*purity

Signific

0.8

0.6

0.4

Mixed with $M_{\mu\mu}$

5 inputs: P_t , thrust, $M_{\mu\mu}$, charge * $\cos \theta_{\mu^{\pm}}$

Signific

Summary

Various configurations are tested Best precision: 28%

500 GeV, 1600 fb ⁻¹ left pol.	Zh	WWF	Mixed
without $M_{\mu\mu}$	146%	98%	94%
with $M_{\mu\mu}$	65%	31%	28%

- better than extrapolation 🙂

- ---~50% in Zh, ~40% in WWF
- --~31% in Zh+WWF
- factor 2 from ideal case
 - -- 13% if 100% eff. & no bkg.
- MC stat., overtraining...
- separation doesn't help for improvement???

-- combine Zh+WWF = 28%

Plans:

FSR study, re-weighting, search better way/variables... check the difference between Reco. and MC