Characterizing Light Higgsinos from Natural SUSY at ILC $\sqrt{s} = 500$ GeV

BSM sub WG meeting

Jacqueline Yan (KEK)

On behalf of H. Baer (Univ of Oklahoma), M. Berggren, S.-L. Lehtinen, J. List (DESY), K. Fujii (KEK), T. Tanabe (Univ of Tokyo)

Outline

Sample requests and others

Motivation for Searching Light Higgsinos with Small ΔM

From experimental point of view:

- LHC already excluded large regions with large ΔM = M(NLSP) – M(LSP)
- Remaining region with compressed spectrum very small visible energy release, near impossible to probe at LHC
 - ➔ ILC is essential

From theoretical point of view: Compressed Higgsino spectra related to

naturalness [e.g. arXiv:1212.2655, arXiv:1404.7510]

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

• To maintain small electroweak fine tuning ΔEW (<~3%), all contributions on right-hand-side

should be comparable to M(Z) \rightarrow requires $\mu \sim 100-300 \text{ GeV}$

top and bottom squarks in the few TeV regime, gluino mass 2–4 TeV, 1st, 2nd generation squarks and sleptons in the 5–30 TeV regime

- μ feeds mass to both SM (W, Z, h) and SUSY particles (Higgsinos)
- Higgsino masses not too far from masses of W, Z, h (\sim 100 GeV)

Goal of Light Higgsino Study

This study

Demonstrate measurement precision of Higgsino masses and production cross sections

Serve as a basis for future discussions of ILC run scenario in the case of new particles being discovered

Results of masses and cross sections (= "observables") as input

S.-L. Lehtinen (DESY) et al

determine SUSY parameters

e.g. M_1 , M_2 , μ , tan β

- Why?
- To get info about unobserved sparticles
- To test GUT-scale models
- **How?** Global χ^2 fit of to observables

Study required input parameters and precisions; interplay with Higgs precision measurements

Benchmarks in this Study

neutralino mixed production $(\chi_1^0 \chi_2^0)$ and chargino pair production $(\chi_1^+ \chi_1^-)$ Vs = 500 GeV, full ILD detector simulation , (Pe-, Pe+) = (-0.8,+0.3), (+0.8, -0.3)

RNS model (Radiatively-driven natural SUSY)

- 4 light Higgsinos:
- $\begin{array}{ccc} \widetilde{\chi}_1^0 & \widetilde{\chi}_2^0 & \widetilde{\chi}_1^+ & \widetilde{\chi}_1^- \\ \text{(LSP)} \end{array}$
- ΔM complies with naturalness (no need for ISR tag)

Benchmarks with smaller ΔM are drawing attention ,

as ILC1 is (almost) excluded by LHC

ILC1 results (and some ILC2) shown at LCWS 2016, http://agenda.linearcollider.org/event/7371/contributions/37853/.

and in <u>https://arxiv.org/pdf/1702.05333.pdf</u>

- Recently produced preliminary results for Mirage
 Mediation (nGMM1) (ΔM as small as 4.5 GeV)
- Will show at next BSM-focused ILD meeting (Mar 8)
- Now finishing analysis and reconfirming results , in preparation for publication

NUHM2 model parameters [arXiv:1404.7510]

χî

Ζ

Ζ

 $\tilde{\chi}_{i}^{+}$

Benchmark	ILC1	ILC2
M ₀ [GeV]	7025	5000
M _{1/2} [GeV]	568.3	1200
A ₀ [GeV]	-10427	-8000
tanβ	10	15
μ [GeV]	115	150
M _A [GeV]	1000	1000
M(χ ₁ ⁰) [GeV]	102.7	148.1
$M(\chi_1^{\pm})$ [GeV]	117.3	158.3
Δ M (N ₂ ,N ₁)	21.3	9.7
M(χ ₂ ⁰) [GeV]	124.0	157.8
Δ M (C ₁ ,N ₁)	14.6	10.2
Defined at GUT		

Defined at weak scale Observables

5

Analyzing challenging benchmarks with smaller ΔM

Despite reduced visible energy, doable without large change in analysis strategies Showed that Higgsino mass precisions $< \sim 1\%$ (H20) should be achievable

Masses [GeV] from	LHA files:			\sim			 		
	ILC1	ILC2	nGMM1	Ge/	4			ILC1 e	· • •
M(N1)	102.7	148.1	151.4	۲.	3			ILC2 e	e_e+ _e_e+ _e_e+
M(N2)	124.0	157.8	155.8	(fb)				nGMN	
ΔM(N2,N1)	21.3	9.7	4.4	ion	2			IGNIN	11 e _R e <u>'</u> - - -
M(C1)	117.3	158.3	158.7	Sect	1				-
ΔM(C1,N1)	14.6	10.2	7.3	SSC				ترکی کرکی میں اور	-
				ŏ	0	20 Di	40 -lepton E	60 nergy (C	80 GeV)

Cross sections [fb] for \sqrt{s} =500 GeV with TDR beam parameters , Event Generator: WHIZARD v1.95, DBD setup)

Process (Pe-,Pe+)	ILC1	ILC2	nGMM1
C1C1 (-1,+1)	1799.9	1530.5	1520.6
C1C1 (+1,-1)	334.5	307.2	309.5
N1N2 (-1,+1)	490.9	458.9	463.5
N1N2 (+1,-1)	378.5	353.8	357.3

Event Selection

Neutralino mixed production with leptonic decay $e^+e^- \rightarrow \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$

- Reconstruct two leptons (ee or μμ) which originate
 from Z^{*} emission in decay of χ₂⁰ to χ₁⁰
- Major residual bkg. are 4f processes accompanied by large missing energy (vvll)
- 2-γ processes are removed by BeamCal veto, cuts on lepton track p_T, and coplanarity

Chargino pair production with semileptonic decay $e^+e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 q q' \ell \nu$

- Reconstruct two jets which originate from W^{*} emission in decay of χ₁[±] to χ₁⁰
- Use lepton (e or μ) from the other chargino as tag
- BeamCal veto, cuts on missing p_T, # of tracks, # of leptons, and coplanarity remove almost all bkg.

(signal significance > 100)

signal

(16)

2-v

 μ^{-}

1

signal

Ζ

 $\gamma(4)$

vvII

1

 $\bar{\nu}_e$ (8)

Extraction of Higgsino Mass and Cross Section

Mass:

- Kinematic edges of dilepton/dijet energy and invariant mass are functions of √s and Higgsino masses

(requires correction for detector resolution)

Cross section:

Count number of events under dilepton / dijet energy

Use Toy Monte Carlo to obtain mass and cross section precisions

Status

made progress in analysis of benchmarks with smaller ΔM some channels still in progress Currently obtained statistical precisions: Assuming H20

- Mass : < ~ 0.5% (ILC1, ILC2) <~1.5% (nGMM1)
- Cross section : 1-1.5% (ILC1, ILC2)
- Pessimistic limit for case of overlay in Higgsino signal : "a factor of 2 worse"

Plans

- Requests sent to Mikael for production of extra SGV samples for aa2f and ae/ea3f processes (currently not enough statistics to ensure they are gone from higher kinematic edge)
- Finish/finalize analysis for all benchmarks
 move towards publication of a paper including all 3 benchmarks theory, analysis, and SUSY parameter extraction
- Study potential for treating overlay bkg
- Study new tools for low pt tracking \rightarrow improve **lepton tagging efficiency**
- In future : light Higgsino analysis at lower ECM (350 GeV ?) staging

Thank you for listening

Additional Material

How do these signals look in the detector? (1)

√s =500 GeV

How do these signals look in the detector? (2)

√s =500 GeV

Chargino Search

