Resolution Study -17 th Feb 2017

N. Blaskovic, T. Bromwich, R. Ramjiawan

17/02/17 Day shift

Resolution calculations for:

- Charge scans - measured resolutions compared with predicted scaling 1/q.
- Attenuation scans - compared with predicted logarithmic scaling.

Looking at improvements from adding X information to the fitting. (With FONT 5 A \#4 as board 1 (IPY), and FONT 5 \#1 as board 2 (IPX).)

Charge Scan

Permanent Sample Jump

- Filename: jitRun17_0dB_0.55_Board2_170217
- Reference signal shows two families of peaks, peak permanently shifts after 194 triggers for both boards.
- Single-trigger sample jumps at triggers: (X) 20, 76 and (Y) 130, 183.

Jitter Run Waveforms (X)

- jitRun4_0dB_0.55_Board2_170217, waveforms for X.
- Sample numbers used: 61:68.
- 9 triggers cut from 400 total triggers.

Jitter Run Waveforms (Y)

- jitRun4_0dB_0.55_Board2_170217, waveforms for Y.
- Sample numbers used: 44:51. Sample early in the waveform as BPF.
- 8 triggers cut from 400 total triggers.

Jitfer Run Waveforms: Reference Signal

Reference signal sampled at 47.

Reference peak at sample 46.

Can see single trigger sample jumps, removed during analysis.

Geometric Resolution Charge Scan

- Charge Scan 1
- Charge Scan 2

IPA Resolution Fitting to Y information

IPA Resolution Fitting to Y

IPB Resolution Fitting to Y information

IPB Resolution Fittting to Y

IPC Resolution Fitting to Y information

IPC Resolution Fitting to Y

Improvement to Resolution by also Fitting to X

- Difference in resolution = resolution (fitting to Y) - resolution (fitting to X and Y) in nm .
- Plots of resolution (fitting to X and Y) in appendix.
- Improvements to resolution from X appear to scale with charge.

IPA

- ।'/q, 1/q
- I'/q, Q'/q, 1/q
- I'/q, Q'/q, Self Q'/q, 1/q

Improvement to Resolution by also Fitting to X

- Difference in resolution = resolution (fitting to Y) - resolution (fitting to X and Y) in nm .
- Plots of resolution (fitting to X and Y) in appendix.
- Improvements to resolution from X appear to scale with charge.

IPB

Improvement to Resolution by also Fitting to X

- Difference in resolution = resolution (fitting to Y) - resolution (fitting to X and Y) in nm .
- Plots of resolution (fitting to X and Y) in appendix.
- Improvements to resolution from X appear to scale with charge.
- I'/q, 1/q
- $l^{\prime} / q, Q^{\prime} / q, 1 / q$
- I'/q, Q'/q, Self $Q^{\prime} / q, 1 / q$

Attenuation Scan

Attenuation Scan

Geometric Method

Deviation from trend-line Geometric

Fractional Deviation from Resolution Prediction based on 20 - 50 dB

Attenuation Scan (Y)

Fitting to $I^{\prime} / q, 1 / q$

Fitting to l'/q, l/q

Fractional Deviation from Resolution Prediction based on $20-50 \mathrm{~dB}$

Attenuation Scan (Y)

Fitting to $I^{\prime} / q, Q^{\prime} / q, 1 / q$

Fitting to l'/q, Q'/q, l/q

Fractional Deviation from Resolution (Prediction based on 20 - 50 dB)

Attenuation Scan (Y)

Fitting to $I^{\prime} / q, Q^{\prime} / q, 1 / q$, Self Q^{\prime} / q

Fitting to l'/q, Q'/q, Self Q'/q, 1/q

Fractional Deviation from Resolution (Prediction based on 20 - 50 dB)

jitRun2 - AQD0FF Scan1

Fitting method: best resolution calculation at 0.55×10^{10} charge. Samples used: (Y) 44:51, (X) 61:68, Ref 47. 14 triggers out of 400 cut ($31,93,138,139,168,201,210,226,301,302,321,326,334,351$)

Fitting to: \mathbf{X} and \mathbf{Y} (6, 10,11 parameters)

I'/q and $1 / \mathbf{q}:$ IPA $=0.0448+/-0.0022 u m$

$$
\begin{aligned}
& : \mathrm{IPB}=0.0399+/-0.0020 \mathrm{um} \\
& : \mathrm{IPC}=0.0215+/-0.0011 \mathrm{um}
\end{aligned}
$$

I'/q, Q'/q and 1/q: IPA = 0.0366+/-0.0018um

$$
\begin{aligned}
& : I P B=0.0316+/-0.0016 u m \\
& : I P C=0.0184+/-0.0009 u m
\end{aligned}
$$

$\mathbf{I}^{\prime} / \mathbf{q}, \mathbf{Q} \mathbf{\prime} / \mathbf{q}$, Self \mathbf{Q} '/q, $\mathbf{1} / \mathbf{q}:$ IPA $=0.0330+/-0.0017 u m$

$$
\begin{aligned}
& : I P B=0.0307+/-0.0015 u m \\
& : I P C=0.0179+/-0.0009 u m
\end{aligned}
$$

Fitting to: \mathbf{Y} (4,6,7 parameters)
I / q and $1 / \mathbf{q}:$ IPA $=0.0454+/-0.0023 u m$

$$
\begin{aligned}
& : I P B=0.0404+/-0.0020 u m \\
& : I P C=0.0220+/-0.0011 \mathrm{um}
\end{aligned}
$$

I'/q, Q'/q and $\mathbf{1 / q}:$ IPA $=0.0373+/-0.0019 u m$

$$
\begin{aligned}
& : I P B=0.0331+/-0.0017 \mathrm{um} \\
& : \mathrm{IPC}=0.0192+/-0.0010 \mathrm{um}
\end{aligned}
$$

$\mathbf{I} / \mathbf{q}, \mathbf{Q} / \mathbf{q}$, Self $\mathbf{Q} / \mathbf{q}, \mathbf{1} / \mathbf{q}:$ IPA $=0.0343+/-0.0017 u m$
$: I P B=0.0322+/-0.0016 \mathrm{um}$
: IPC =0.0188+/-0.0009um

Summary

Geometric fitting -

- Scaled approximately as predicted with charge
- Didn't scale with attenuation as predicted down to 0 dB

Fitting method -

- IPA and IPB resolution showed increasing resolution with decreasing charge (but not scaling as $\propto 1 / \mathrm{q}$).
- IPC resolution showed much less sensitivity to charge.
- IPC shows especially bad scaling of resolution with attenuation - measured resolution approximately twice predicted resolution at 0 dB .

Fitting to X, Y resolution -

- Improvement to resolution (for fitting to X as well) appears to scale with charge for IPA and IPB, but offers little improvement in IPC (as already has much lower resolution?).

Appendix

Saturating Reference

IPC (Y) jitRun19_OdB_0.35_Board1_170217

IPA Resolution Fitting to X and Y information

IPA Resolution Fitting with X and Y

IPB Resolution Fitting to X and Y information

IPB Resolution Fitting to X and Y

IPC Resolution Fitting to X and Y information

IPCY Resolution Fitting to X and Y

