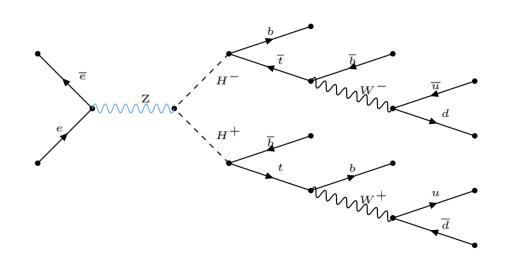
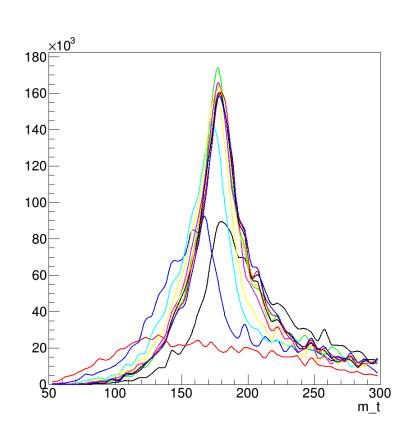
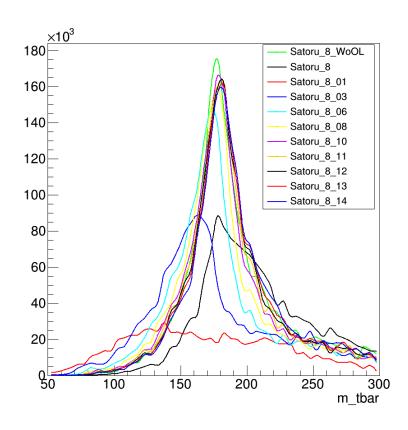
A simulation study of heavy Higgs bosons decaying to jets at high energy regions of the ILC

by Christian Drews 2017.03.03


Academic advisor: Hitoshi Yamamoto




Reconstruction $e^+e^- \to H^+H^-/HA \to \text{jets}$

- 8 jets
- Pairing 4 jets with lowest b tag to W mass
- Pairing 4th and 5th jet to top mass
- Pairing other jets to same invariant mass
- Background:
 - ttH/ttZ/ttg -> ttbb
 - tt -> bWbW
 - HA -> bbbb

Find R for kt-Algorithm

- Retracking pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

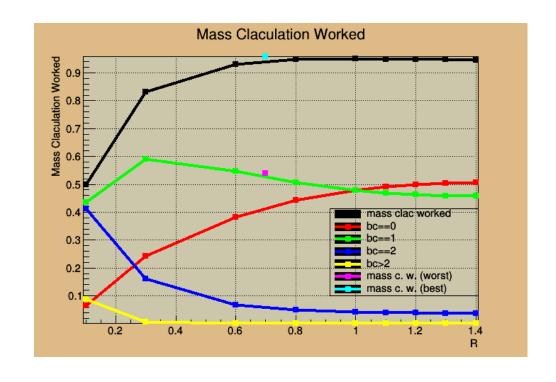
	CS1 (%)	CS2 (%)
Jet1	0	100
Jet2	100	0
Jet3	100	0
Jet4	0	100

- Retracking pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

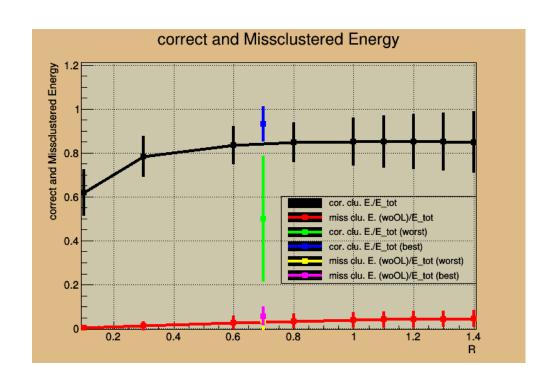
	CS1 (%)	CS2 (%)
Jet1	15	85
Jet2	55	45
Jet3	99	1
Jet4	0	100

- Retracking pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

	CS1 (%)	CS2 (%)
Jet1	60	40
Jet2	55	45
Jet3	99	1
Jet4	0	100

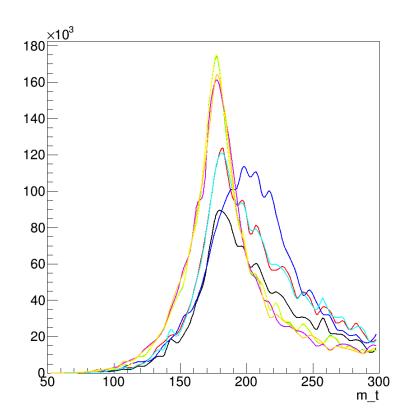

- Retracing pfo to MC part
- Separation of Colorsinglet
- Pairing Jets

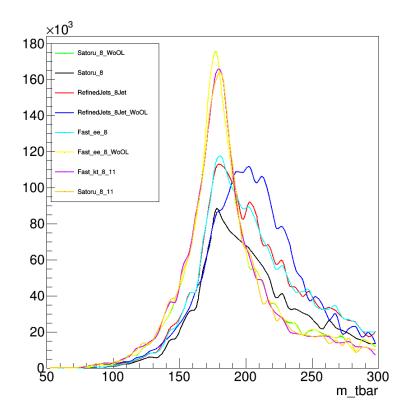
Correcting


	CS1 (%)	CS2 (%)
Jet1	60	40
Jet2	55	45
Jet3	99	1
Jet4	0	100

Mass Calculation Worked

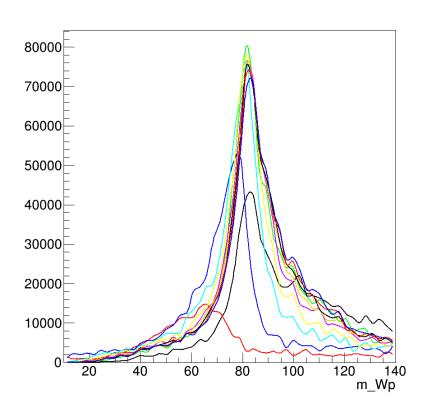
- bc == 1 means one correction is nesseary
- I only correct ones because correcting more then ones is difficult

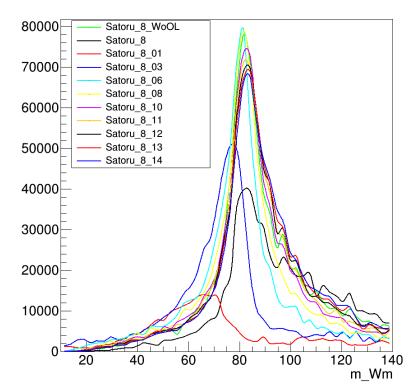


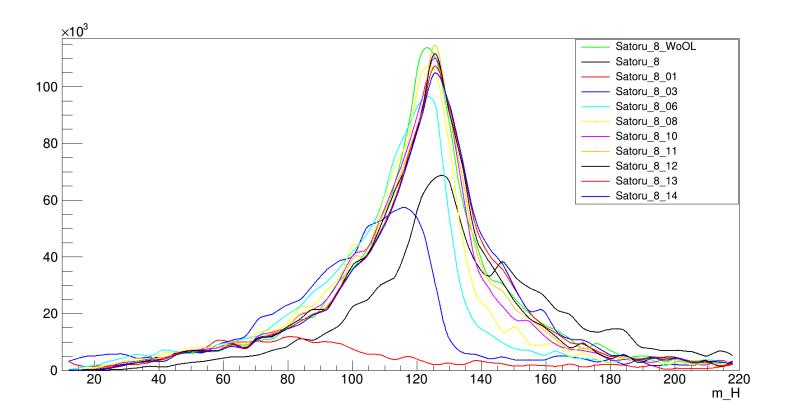

Correctly and Missclustered Energy

Different Algorithms

- RefinedJets from LFCIplus
- RefinedJets without overlay is wrong






Status

- Best R is around 1.0
- Next:
 - Check why LCFIplus without overlay is wrong
 - Holiday until annual meeting end of March
 - Check Chi² Pairing (2nd step) with 3D display
 - Need heavy Higgs samples
 - Research how to distinguish H+ and H-

Backup

Motivation $e^+e^- \to H^+H^-/HA \to \text{jets}$

- Two Higgs doublet model (2HDM)
 - easy extension of SM
 - large outcome (dark matter)
 - EE-Collieder very sensitive (up to kin. Limit)
- Light Higgs 126 GeV -> decoupling limit
 - Heavy Higgs to gauge boson coupling small
 - Hardly visible in LHC
 - Makes fermion final state most promissing
 - For high mass resulution -> 8 jet final state

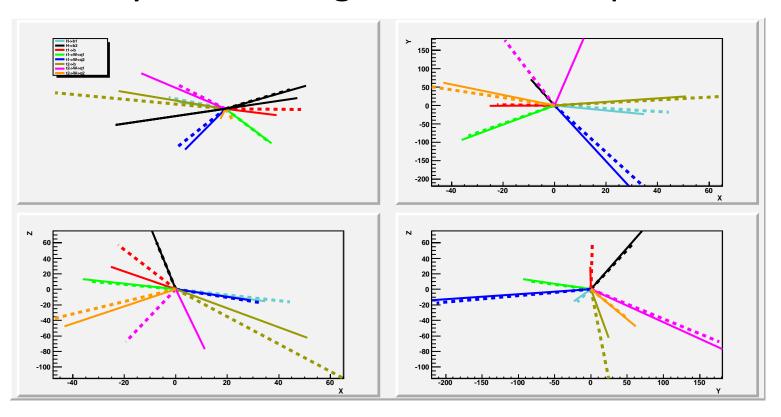
Chi²

$$e^+e^- \to H^+H^-/HA \to \text{jets}$$

- Testing with tth -> bqqbqqbb (same final state)
- Makes 40320 combinations
- With b tag consideration -> 576 combinations
- without jet 3 and 4, 7 and 8, 6 and 2, ... -> 36 combination

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}})^{2} - (m_{h})^{2}}{\sigma_{h}} \right| + \left(\frac{m_{j_{3}j_{4}j_{5}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

Chi²


$$e^+e^- \to H^+H^-/HA \to \text{jets}$$

• For H+ H-

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

3D display

Event by event integrated in Marin prosessor

CP Violation

- Possible to discover in this channel
- Through decay into invisible SUSY particles
- δ between 0.20 and 0.02 for tan(β) between 5 and 30

$$\delta_{f\overline{f}'}^{CP} \propto \frac{1}{\tan\beta}$$

$$\delta^{CP}_{f\overline{f}'} = \frac{BR(H^+ \to f\overline{f}') - BR(H^- \to \overline{f}f')}{BR(H^+ \to f\overline{f}') + BR(H^- \to \overline{f}f')}$$